
LokDhaba : Acquiring, Visualizing and Disseminating Data on
Indian Elections

Mohit Kumar
mohit.kumar@ashoka.edu.in

Trivedi Centre for Political Data, Ashoka University
Haryana, India

Chinmay Narayan
chinmay.narayan@amuselabs.com

Amuse Labs
Uttarakhand, India

Sudheendra Hangal
sudheendra.hangal@ashoka.edu.in

Trivedi Centre for Political Data, Ashoka University
Haryana, India

Priyamvada Trivedi
priyamvada.trivedi@ashoka.edu.in

Trivedi Centre for Political Data, Ashoka University
Haryana, India

ABSTRACT
Despite the importance of elections in India, the world’s largest
democracy, data on Indian electoral outcomes has not been easily
available for political analysis in the past. This has been due to
the problems inherent in assembling any data archive of social and
political data spanning many decades. In this paper, we shed some
light on these problems and present some solutions in the context of a
system we built called LokDhaba. LokDhaba includes the first freely-
available, structured and cleaned data archive on Indian electoral
outcomes at the national or state level from 1962 onwards. To build
this archive, we overcame the challenges of data scraping, parsing,
cleaning, consistency checking and integration between multiple
sources, with the help of some novel tools. LokDhaba is being used
extensively by political scientists, researchers, journalists and others
to better understand long-term electoral trends in India.

CCS CONCEPTS
• Information systems → Document representation; Relational
database model; Collaborative and social computing systems and
tools; • Computing methodologies → Knowledge representation
and reasoning.

KEYWORDS
social database design; data visualization; web application.

ACM Reference Format:
Mohit Kumar, Chinmay Narayan, Sudheendra Hangal, and Priyamvada
Trivedi. 2020. LokDhaba : Acquiring, Visualizing and Disseminating Data on
Indian Elections. In ACM SIGCAS Conference on Computing and Sustainable
Societies (COMPASS) (COMPASS ’20), June 15–17, 2020, Ecuador. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3378393.3402285

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COMPASS ’20, June 15–17, 2020, Ecuador
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7129-2/20/06. . . $15.00
https://doi.org/10.1145/3378393.3402285

1 INTRODUCTION
The Indian elections are the largest in the world, currently involving
an electorate of over 900 million people [25]. As specified in the
Indian constitution, elections are held every five years at national
(parliamentary), state and local levels, with a “First Past The Post”
system. At the state and parliamentary level, the elections are con-
ducted by the Election Commission of India (ECI) and the state
election commissions in 29 states and 7 union territories. These elec-
tions generate a fascinating trove of data for understanding political
trends and processes. However, it is difficult to obtain structured
data for the outcomes of Indian elections in consistent formats over
a long period of time. This inhibits fundamental questions political
scientists would like to ask, such as: What is the pattern in voter
turnout over time across the country? Are women participating more,
or less, in the political process? Is the supply of political candidates
increasing or decreasing over time? How many times does an as-
pirant for political office contest an election? Are these patterns
correlated with caste, geography, age, gender or income?

In this paper, we discuss technical challenges we encountered
in the acquisition and dissemination of Indian elections data that
enables the answer to such questions. Over the past three years,
we have set up a unique data processing pipeline to process the
results of all Indian elections since 1962 and make them freely
available to researchers, journalists and the general public. Our
dataset includes cleaned and harmonized electoral results published
by the ECI, new primary variables (such as unique identifiers for all
individuals contesting Indian elections), and integration with datasets
from other reliable sources such as the Association of Democratic
Reforms (ADR), PRS Legislative Research and the Lok Sabha (the
lower house of the Indian Parliament). Over this period, we have
managed to keep our dataset up to date, and absorbed the results of
over 20 state elections and one national election.

Our data processing pipeline and data dissemination portal is
called LokDhaba1. The portal was designed by an inter-disciplinary
team of computer scientists and political scientists, and is being used
extensively by researchers2 and journalists3 working with Indian
elections data. It was heavily cited by major news outlets across the

1In Hindi, Lok means people, and Dhaba means a roadside eatery, often frequented by
all sections of society
2See https://tcpd.ashoka.edu.in/research-publications/ for a list of research publications.
3See https://tcpd.ashoka.edu.in/press-articles/ and https://tcpd.ashoka.edu.in/data-
quoted/ for a list of articles published by various media houses.

https://doi.org/10.1145/3378393.3402285
https://doi.org/10.1145/3378393.3402285
https://tcpd.ashoka.edu.in/research-publications/
https://tcpd.ashoka.edu.in/press-articles/
https://tcpd.ashoka.edu.in/data-quoted/
https://tcpd.ashoka.edu.in/data-quoted/

COMPASS ’20, June 15–17, 2020, Ecuador Kumar and Narayan, et al.

world for the Indian parliamentary elections in 2019, including by the
BBC and The New York Times. LokDhaba provides the cleaned and
integrated data in a single portal at https://lokdhaba.ashoka.edu.in/.
The data can be freely downloaded and used for any purpose. Users
can also visualize, bookmark and download data to analyze trends
over time and space.

Our research contributions in this paper are:

(1) We describe the data processing pipeline that we set up to
acquire, process, check and disseminate data. Along the way,
we designed solutions to technical challenges that are likely
to be useful for any longitudinal dataset.

(2) We shed some light on how to deal with poorly organized
government records in formats that drift over time. We illus-
trate how our resulting dataset was able to point out errors
in the original dataset that might otherwise have remained
undiscovered.

(3) We describe ways to enhance the value of the dataset, for
example, by resolving ambiguous terms, and by connecting it
to other datasets.

(4) Finally, we present an open source platform for political
data dissemination and visualization that may be useful for
any country with a First Past the Post system of electoral
democracy.

This paper is structured as follows: We begin with a discussion
of related work in the next section. In Section 3, we describe the
data extraction process from the original data. Next, we describe
how we organize and extend the dataset. In Section 5, we discuss the
web application and visualization framework used to disseminate the
data. Finally, we report some user feedback, and close by discussing
the impact of our work.

2 RELATED WORK
Various efforts have been made in the past to work on Indian election
results. Verniers and Jensenius provide a good primer on Indian
election processes and the data generated by them, as well as the
utility of this data in political science [15]. The primary source of
data in this area is the set of verified statistical reports released by
the ECI after every election [24]. Commercial services like Nielsen,
[27], I-PAC[29], Datanet India [18] and The Center for Monitoring
Indian Economy [11] use this data to generate political insights
for their customers. Lokniti [5, 28], a research unit of Center for
Study of Developing Societies (CSDS) also digitizes election results
along with state and national level surveys; however, their data is
not openly available for downloading and analysis. While a few
companies like India Votes [19, 26] publicly release party-wise or
constituency-wise aggregates, their methods for obtaining, treating
and updating data are opaque, and their data tends to be incomplete.

The Association for Democratic Reforms (ADR) digitizes manda-
tory affidavits filed by candidates and releases information on educa-
tion, occupation, assets, criminal cases, and other individual level
attributes on the MyNeta portal. This information on election candi-
dates has led to a growth in the literature on corruption and elections
in India [2, 8, 9, 33]. However, ADR’s data is not linked with the
electoral performance of the corresponding individual and spans a
shorter time range since the affidavits are available only since 2004.

LokDhaba integrates the election results dataset from the ECI with
ADR’s affidavit database.

The Constituency-Level Elections Archive (CLEA)[17], is the
most comprehensive repository of detailed results for national elec-
tions from around the world. There is also the Socioeconomic High-
resolution Rural-Urban Geographic Dataset on India (SHRUG) [1]
dataset which contains indicators on demographic, socioeconomic,
firm and political outcomes from 1990-2013. And lastly, individual
scholars too have also released partial datasets on Indian elections
[3, 4, 6, 7, 12, 16, 23].

While many of the above datasets have been used to answer
questions of interest to specific researchers, the LokDhaba dataset
is more extensive and has undergone rigorous data treatment and
consistency checking. It encompasses a comprehensive range of vari-
ables; for example, it incorporates data about bye-elections, which
are generally ignored by other datasets, and attempts to identify
unique entities (such as individuals and parties) in the Indian politi-
cal sphere. LokDhaba data is also freely available for any purpose.
LokDhaba allows users to build their own data visualizations, or use
it’s API capabilities to use the data for any purpose.

3 DATA EXTRACTION ON LONGITUDINAL
DATA

The Election Commission of India provides a digitized archive of
the results of all elections conducted by it from 1951 in the form of
“statistical reports” on its website [24]. Statistical reports for previous
years were simply digitized from paper archives. Subsequent reports
have been born-digital, but are available as PDF files, with a few
recent results in spreadsheet form. Each statistical report contains
several sections. The most important and voluminous of these is a
section containing detailed constituency-wise election results. This
section contains the official record of the election in that constituency
and includes the constituency number, names of contesting candi-
dates, the party each represents, and the number of votes polled. It
also contains constituency-wide information such as the number of
voters and electors, the number of postal ballots, and the number of
invalid votes.

3.1 Format Drift
As is often the case with longitudinal data, the formats in these
statistical reports have drifted considerably over time. Entire sections
have appeared or disappeared in different years; data sections within
a page have moved relative to each other, or new fields have got
introduced. Figs. 1 and 2 show the change in format between the
1980 and 2019 statistical reports.

Sections of the source reports often duplicate information, which
can lead to inconsistencies. (In database terms, they are non-normalized.)
For examples, candidates marked as women in one section of the
report may be inconsistently marked as men in another section.

There is also inherent complexity in the data, which needs to be
resolved manually. For example, periodic reorganization of Indian
states has led to renaming existing states or the creation of new states.
These issues can only be tracked manually; LokDhaba handles this
by keeping a small set of mapping files to capture this information.

https://lokdhaba.ashoka.edu.in/

LokDhaba : Acquiring, Visualizing and Disseminating Data on Indian Elections COMPASS ’20, June 15–17, 2020, Ecuador

Figure 1: The Detailed Results section of the statistical report of
the 1980 parliamentary elections. The format drifts over time;
different reports have different variants of this format.

Figure 2: The Detailed Results section of the statistical report
of the 2019 parliamentary elections.

3.2 Data Extraction and Parsing Pipeline
To design a database for systematically collecting, analyzing and
expanding the data on Indian elections, we first needed to extract in-
formation about constituencies and candidates from all the statistical
reports. The constituency-wise detailed results section contains the

electoral information about all the candidates in a given constituency.
We build the primary data about candidates by extracting and pars-
ing this section from 342 statistical reports corresponding to all the
elections held since 1962. (Elections in prior years had complicated
rules like multiple winners in a constituency, making it difficult for
our schema to cover them consistently.)

The structure of this results section varies across the statistical
reports in terms of table format and the information present in those
tables. Our high-level pipeline to extract, clean and parse this data is
shown in Fig. 3. This pipeline can be broadly divided into following
stages.

Figure 3: Electoral data extraction pipeline

3.2.1 PDF to text conversion. The first step is to use PDF-to-text
conversion tools (or optical character recognition tools in some cases)
to extract text from the PDF file. If the PDF file was created manually,
instead of scanning a paper file, the pdftotext utility [22] gives good
results and preserves the layout of the PDF during conversion.

3.2.2 Handling format drift. After converting the PDF file to text,
we need to parse the text to extract the data in appropriate columns
of a structured format. For this purpose, we initially started by devel-
oping custom parsers written in the Python programming language.
This needed to be done for 342 separate files across all elections.
However, the format drift in the tabular structure of these files makes
the job of the parser very difficult. Our parser needed a lot of special
case handling to handle format mismatches and this was not a solu-
tion that would scale and be maintainable in the long run. We have
observed that this is a recurrent problem in longitudinal datasets,
and therefore it needs a generalizable solution.

Our overall goal is to develop a family of parsers for a set of
related formats, in this case, related to Indian elections data. To
enable this, we have to come up with a set of parsing rules that
are closely tied to the domain and can be easily provided or vetted

COMPASS ’20, June 15–17, 2020, Ecuador Kumar and Narayan, et al.

Figure 4: Sample parsing specification program and associated file to parse

by domain experts. It is not known how many different parsing
specifications will be needed; hence, the specifications themselves
need to be iteratively developed as we discover their limitations.
In order to detect parsing failures, we need to incorporate a series
of consistency checks that pro-actively warn us of such failures,
and allow us to develop new specifications or modify existing ones.
Consistency checks may be simple (a value in a certain column must
be of a certain type) or compound (the values in two columns must
satisfy a certain relationship).

Our parsing framework consists of a simple, textually-specified
but graphically-viewable programming language. This language
captures the essence of the rules needed to parse the family of input
files. To develop these specifications, one can write a few simple
python functions, and does not need to know any parser generation
tools like lex or yacc. The ability to view the parsing specification
graphically makes it easy to understand for domain experts who may
not be familiar with programming languages.

A program in our language is represented as a tuple
(
S,G,A,L

)
.

Here S is a set of parsing states, G is a set of guarding conditions, and
A is a set of text processing actions. L : S×G → S×A is a function
that assigns a destination state and action to a source state and a
guarding condition. Specifically,

(
s1,g1

)
→

(
s2,a1

)
∈ L implies

a state transition from s1 to s2 if the guarding condition g1 holds
at s1; before completing this transition, the text processing action
a1 is applied to the input data at s1. Every guarding condition in
G can be of one of the types shown in Table 1. Further, every text
parsing action in A can be of one of the types shown in Table 2. Both
the guarding conditions and the parsing actions are fairly domain-
specific, but are easy to develop just once, since they refer to intrinsic
properties of the data. Hence, their definitions are relatively stable
over time.

Condition Interpretation
true always holds true

startsWith(s) holds true if the line starts with s
endsWith(s) holds true if the line ends with s
contains(s) holds true if the line contains string s

Table 1: Guarding conditions

The set A consists of parsing functions required to extract useful
information from a line of text. For example, the extractCandInfo

Action Interpretation #Variants

extractCandInfo(s)
extracts candidate de-
tails like name, gender,
age, party from string s

3

extractConstInfo(s)

extracts constitutency
details like constituency
type, constituency
number from string s

2

extractVoteDetails(s) extracts vote informa-
tion from string s 1

extractPartyInfo(s)

extracts party informa-
tion like party acronym,
full name, party type
(national or state) from
string s

2

Table 2: Parsing actions

action specifies that the parser is on the verge of extracting candi-
date demographic information like name, age, and gender from the
upcoming text. The third column of Table 2 represents the number
of different variations of each parsing method to cover format drift
across different input files. One example of this drift is a rearrange-
ment of the order of fields in candidate information. In some files
the candidate’s information follows the order of name, age, gender,
party, valid votes and total votes. In other files, the order of these
fields or the number of fields changed. Due to these issues we created
different variants of parsing functions. In all, just 8 parsing actions of
four representative methods (extractCandInfo, extractConstInfo,
extractVoteDetails and extractPartyInfos) were sufficient to cover
all the format drift that we saw in 342 files.

An example program in our specification language is depicted
in Figure 4. This program is written to parse candidate information
from a text file whose snippet is shown on the right. This snippet,
taken from an actual ECI input file, shows the regularity in the struc-
ture of the content. It shows a set of lines, one for each candidate’s
information, followed by a line representing aggregate information
(in red), and then followed by the start of information of another
constituency. The graphically depicted specification on the left side
in Fig. 4 captures this regularity using two states s1 and s2 and the
transitions among them. The transition from s1 to s2 captures the

LokDhaba : Acquiring, Visualizing and Disseminating Data on Indian Elections COMPASS ’20, June 15–17, 2020, Ecuador

fact that after the aggregate result line in the text snippet (in red) we
expect the file to contain a line for the information related to another
constituency (in green). The label contains("Constituency") =>
extractConstInfo on this transition triggers a state change from s1
to s2 if the input line contains the string "Constituency". As a result
of this transition, the parsing method extractConstInfo extracts the
constituency information from the input line. Further, the fact that
there are more than one candidates in a constituency and we need
to extract candidate information for all of them is captured by a self
transition from s2 to itself. It is to be noted that from a given state
more than one transitions can be triggered based on the input data.
In this scenario the execution of the parser is stopped with detailed
information about the input line in that state. This information is
then used to write a more precise specification of the parser so as to
traverse only unambiguous transitions.

This specification is passed to a Parser Execution Engine as shown
in Fig. 3. This engine takes a text file as an input and executes the
parser specifications to generate a structured database file. Using
this approach, we were able to cover the parsing of 342 files by 20
different parser specifications.

3.2.3 Detecting parsing errors. An important step after getting
parsed values from the parsing stage is to perform sanity checks
on them. Errors can get introduced at any of the previous stages of
the extraction pipeline. For example, PDF to text conversion may
not be accurate. Or the parsing phase may wrongly assign the value
of one column to another. During our initial development, it was
not unusual that a column like, say, ‘Gender’ would wrongly get
mapped into the ‘Total Votes’ column. To detect such anomalies
easily and refine our parser, we developed a consistency checking
framework. This framework allows domain specialists to express
sanity checks for the data in a simple and expressive manner. For
example, a person working with electoral data can specify that the
number of total votes polled in a constituency should be the sum total
of all the votes polled in that constituency by individual candidates.
Consistency checks could also be applied to the type of values in a
column (a ‘Gender’ column can only contain the values ‘M’, ‘F’, or
‘O’, a ‘Votes’ column can only be a number greater than or equal to
0), or specify constraints between columns. Any violation of such a
check indicates a data error has been introduced, and prompts the
user to refine the specification or look closely at the source data.

Of course, some of these errors also represent an actual problem in
the source data and may require further analysis by a domain expert.
Some examples anomalies we observed in our source data were
changing of the type of a constituency within a delimitation (which
is not expected; see Section 4.4.3), and more than one candidate
from a party contesting in the same constituency.

The consistency checks also helped us to identify special cases in
the data that we were unaware of. In constituencies of the Sikkim leg-
islative assembly, we were not aware that the type of a constituency
could have the valid tag “BL”, which marks reservation of the con-
stituency for selected backward classes. We were also able to find
out missing results for constituencies. For example, the statistical
report for the 7th Parliamentary assembly has data for only 2 con-
stituencies in Assam instead of the expected 10. Similarly, results
for Purnea constituency in Bihar were missing. Also, comparing
total voters to electors in a constituency, as total electors have to be

greater than total voters, helped us narrow down errors due to scrap-
ing misalignment. The data type checks helped us to identify missing
and incorrect values in bye-elections, missing candidate names in
12 observations, missing votes for a candidate in 56 observations,
incorrect constituency or candidate types, and missing gender values
in 928 state assembly and 173 national assembly constituencies for
9,104 candidates.

An important objective of our data extraction pipeline is to make
the extraction and parsing process as repeatable as possible. This
allows us to handle situations when a new version of the data is
released, or when better tools become available (say, for OCR) or
even when we find a bug in our own tools or processes. Capturing the
parsing rules in about 20 high-level directives makes this possible,
and is vastly preferable to performing various steps manually.

Our parsing framework can be used in any situation where domain
experts and programmers need to work together to convert some
source date into a structured format for further processing. It allows
non-technical users to effectively take part in the process of data
extraction and parsing.

4 DATA MANAGEMENT AND INTEGRATION
In this section, we describe how we organize our dataset extracted
from the ECI’s statistical reports and integrate it with other datasets.
The dataset has to be extendable since several new variables are
collected by domain experts or field researchers. For example, politi-
cal scientists often study data across a cohesive sub-region within a
state in order to analyze results, trends and swings within such sub-
regions. Similarly, they may want to cross-reference this data with
data related to administrative units such as districts, and sociological
data on candidates such as their caste, religion, and whether they
belong to a political dynasty.

4.1 Structuring Election Results
The data extracted from ECI statistical reports is stored in relational
form, i.e., in several tables, that are almost fully normalized. To
support analysts who may need the entire dataset on one screen,
scripts are used to stitch the primary tables together and derive a
single non-normalized dataset. In order to ensure repeatability in the
process, all updates are made only to primary files (under version
control), and all derived files are generated only from scripts.

4.2 Primary and Derived Data
We now describe the schema of our primary tables. The candidates
electoral info table has candidate variables like candidate name,
sex, party, votes, and the constituency electoral info table has con-
stituency information like constituency name , electors, voters, with
the tuple election type, state name, assembly number, constituency
number, poll number as a foreign key to each other.

Using automated scripts, we also compute derived electoral vari-
ables useful in political analysis such as Valid votes, Turnout per-
centage, Vote share percentage, Deposit lost, Vote margin, Margin
percentage and ENOP4.

4ENOP is the Effective Number of Parties, a common metric used by political scientists
to estimate how healthy the competition is in a democracy

COMPASS ’20, June 15–17, 2020, Ecuador Kumar and Narayan, et al.

Variables related to each individual’s political career like Number
of times contested, Number of times won, Previous party, Last Con-
stituency, Whether incumbent/turncoat/re-contesting are calculated
with the help of the candidate’s unique identifier, as described in
Section 4.4.1 below.

4.3 Fragmented Elections and Bye-elections
While people intuitively associate elections with a specific year (e.g.
the 1991 national elections, the 1996 state elections, etc.). the year
can be a misleading way of relating sets of elections. For example,
the 1991 national elections in India were not conducted in one state
(Punjab) due to law and order reasons; elections in Punjab to the
same parliamentary House were actually conducted in 1992. Further,
in the Indian election system, a bye-election is called when a seat
becomes vacant due to death, resignation or disqualification of an
incumbent. This bye-election election data is provided separately by
the ECI and is released separately from the statistical reports[14].
Bye-election data until 1995 is available as a single spreadsheet with
multiple worksheets for national and state elections [13]. Results
from 1996 to 2008 are released as HTML pages, and results from
2009 onward are released as Microsoft Excel files with results for
each constituency in different worksheets. Once again, we see the
presence of format drift. As a result of the difficulty of dealing with
disparate formats, bye-election data is rarely factored into political
analyses. However, for the purpose of calculating important met-
rics related to incumbency (the number of sitting members who
re-contested, and were elected or lost), it is essential to know the
sitting members at the end of an assembly’s term, and therefore, to
handle bye-election data.

To handle all these cases and merge them into a single table with
a consistent schema in LokDhaba, we associate sets of elections with
assembly (i.e., legislative house) numbers instead of years. There-
fore a particular election in a particular constituency is identified
by a tuple of (“Assembly Number”, “State Name”, “Constituency
Number” and “Poll Number”). The variable “Poll Number“ is used
to accurately record bye-elections data. Increasing Poll Numbers
represent successive elections for a seat in a given assembly.

4.4 Unique Identifiers for Names
Many political science questions require identifying the trajectory
of entities such as parties, candidates and constituencies over time.
This needs us to be able to assign unique identifiers to these entities,
when none exist in our source data.

4.4.1 Election Candidates. To be able to study the career trajec-
tory of every individual candidate, we need a unique identifier for
each person across time – something that the source datasets do not
include. This is a complex task because the spelling of the Candidate
Name field in the dataset can be the same for two different individu-
als and can be different over time for the same individual. Candidates
switch parties and constituencies between elections and it is not pos-
sible to use the existing set of variables to make a unique identifier
for any single individual. For this reason, a human-in-the-loop entity
mapping and resolution system for Indian names called Surf [31]
was designed and implemented to assign a unique identifier for each
individual candidate. Surf clusters records based on a resolution
variable, which is Candidate Name in the current context, based

on a similarity metric designed specifically for Indian names. It
handles phonetic matching, edit distance based clustering, expected
variations like initialization of first and middle names, and expected
streaks of candidates contesting consecutive elections. Initially, each
record in the dataset is given a unique ID and functionality to merge
records within or across clusters is implemented in the interface. A
human analyst merges or unmerges records based on her knowledge,
along with secondary research on every candidate and constituency.
Surf’s user interface makes certain operations in this research easier,
such as mapping place names and searching for news about a can-
didate. This work has helped us create a unique identifier for every
candidate who has contested any election in the dataset.

4.4.2 Political Parties. A similar problem is that statistical reports
often use abbreviations to indicate a candidate’s party. However, the
abbreviations given to parties in the source dataset across elections
are inconsistent, making it difficult to track party performance over
time. The same parties have been assigned multiple abbreviations,
for example, Bharatiya Janata Dal (BHJD, BAJD, BajD, BhJD),
Aam Aadmi Party (AAAP, AAP), All India Anna Dravida Munnetra
Kazhagam (ADK, ADMK, AIADMK, AIDMK), Indian National
Congress (CONG, INC, INC(I), CON) and so on, for over 300
parties. The same abbreviation is also given to two different parties
ad different times, for example AAP (Aam Aadmi Party, Awami
Aamjan Party), BJS (Bharatiya Jan Sabha, Bharatiya Jana Sangh,
Akhil Bharatiya Jana Sangh). Considering the inaccuracies this could
lead to in aggregating party-wise data, we assign a unique identifier
for each party using the same technique used for resolving names
described in the previous section [20, 21].

4.4.3 Electoral Constituencies. In India, a Delimitation Commis-
sion periodically reorganizes boundaries of electoral constituencies
to account for changes in population as measured by the decadal
Census of India. Four major delimitations have been made so far,
in 1952, 1962, 1972 and 2002, along with amendments in 2001,
2003 and 2008. In each delimitation, two thirds of the constituen-
cies for a state are reorganized. This also means a reassignment of
constituency numbers and names. As such, there is no authoritative
way to map constituencies across delimitations. As described later,
this requires us to assign a unique identifier for each constituency to
analyse spatial characteristics with respect to an older time period.

4.5 Integration with Other Datasets
4.5.1 Affidavit Data. Beginning in 2004, it is mandatory for every
election candidate in India to file an affidavit declaring information
such as their address, education, profession, spouse, criminal cases
and financial assets. This data is digitized by the Association of
Democratic Reforms (ADR) and is disseminated on their website
[10]. We scrape this data and integrate it with the elections dataset.
After resolving inconsistencies in candidate names and parties, new
candidate-level primary tables are created with structured fields for
this affidavit data.

4.5.2 Pictures. In order to aid visualizations of candidate perfor-
mance, we use the pictures of electoral winners that are available
from the website of PRS Legislative Research, a think-tank that
tracks performance of legislators. See Fig. 11 for an example of how
these pictures are used.

LokDhaba : Acquiring, Visualizing and Disseminating Data on Indian Elections COMPASS ’20, June 15–17, 2020, Ecuador

4.6 Maps
In this section, we describe some of the challenges of dealing with
geo-spatial data, required for map visualizations built upon our
dataset. In India, state-level constituencies are properly nested and
contained within national constituencies. The present constituency
boundaries at both levels were specified in the 2008 delimitation.
Unfortunately, official spatial boundaries are not made available
in digital format by the delimitation commission. A group called
Datameet has developed a novel solution to this problem – it scraped
the GPS locations of the polling stations in the 2014 election, and
derived approximate constituency boundary maps based on this
data [32]. We adopted these maps as a starting point and applied
consistency checking to detect potential problems.

There are a total of 543 national-level and 4120 state-level con-
stituencies. We identified inconsistencies by comparing each con-
stituency on area, neighbourhood and mapping of state-level con-
stituencies to the national-level constituency they were contained
in. This process helped us find problems with incorrect borders or
missing constituencies in the original maps. We cross-referenced
boundary polygons from the Datameet maps with constituency-wise
listings from election results. We observed that a few urban con-
stituencies were missing. Consistency checks on the area of each
constituency also helped us identify some constituencies with sus-
piciously low area, for example, less that one square kilometer. For
missing or inconsistent constituencies found in the above steps, we
derived the correct shapes using manual digitization of the respec-
tive sub-districts, villages and municipal wards. The geometries of
resulting boundaries are simplified further to remove overlaps and
holes between polygons.

4.7 Data Provenance and Management
To store data and manage updates to our database, we use a git
repository which stores all versions of all primary files and scripts.
Data files are stored in CSV format, allowing efficient storage of
revisions of the data, and ensuring no lock-in to any proprietary
format. Revision control also allows us to track changes down to
the time and person responsible for the change, and to roll back to
any version if necessary. LokDhaba follows an Engineering Change
Order (ECO) process by which each change has to be first vetted by
multiple people before it is introduced in the primary dataset. This
ensures that the data quality remains fairly high.

LokDhaba has scripts that compute derived data from primary
data dynamically. To alert us to any loss in data quality, data con-
sistency checking scripts run nightly as a cron job. The process for
extracting data from affidavits and results is also automated using
scripts, ensuring that we can re-import data from some source, if and
when it changes. This ensures the repeatability of our process.

5 DATA DISSEMINATION
In addition to extracing and organizing the dataset, we designed
a web application with which a user can browse and visualize the
data on-demand. The user can download various versions of the
dataset and visualize the political variables spatio-temporally. Keep-
ing scalability and consistent user experience in mind, LokDhaba is
implemented with a model-view-controller architecture. The tables

described in the previous section are converted into an SQL data-
base that provides the model. This database is exposed through a
Python API, and a React-based framework is used for fast rendering
of visualizations with client-side filtering.

The main ways for an end-user to interact with the data are the
following:

• Browse and Download Data: the user can explore and down-
load the dataset online.

• Data Visualization: the user can build charts and maps to
visualize election results from a political science perspective.

• Incumbency profile: the user can explore the career per-
formance of election candidates using a novel visualization
interface.

5.1 Data Preparation
The front-end access to LokDhaba is characterized by read-only
operations. LokDhaba uses a MySQL database to store and retrieve
data efficiently. Pre-computed tables are stored for assembly, con-
stituency, party and candidate level tables to provide quick visualiza-
tions in the front-end.

An API based on representational state transfer architecture (REST)
is implemented in Python as the interface between the React-based
front-end and the database. Various pieces of functionality are de-
signed as React “routes” to get data for different visualization inputs,
constituency boundaries, paginated browsing and download. The
API receives inputs from the user interface via POST requests, cre-
ates parameterized SQL queries to extract data from the database,
and sends it back as JSON objects.

5.2 User Interface
The main components for the user interface are as follows.

5.2.1 Browse and Download Data. While LokDhaba incorporates
several visualizations, it is important to enable users to download
the raw or filtered datasets to perform their own analysis. It is also
important for users to zoom in to a specific row in the table if they are
interested in a particular election, or a particular candidate, etc. The
Browse and Download component is designed for viewing, filtering,
and sorting raw data for any election. The user selects election type
and state name, and multiple assemblies of the selected state to
view election results. She can also download raw data, filtered down
based on any criteria, as a comma separated values (CSV) file. This
component uses a react-table component to render a large number of
rows as a paginated table. It also supports quick, client-side filtering
and sorting.

Fig. 5 shows a screenshot of the browse data component with
results for the 2019 Parliamentary elections. Note that the position
is filtered to 1, so as to list only winning candidates. Users can also
filter by any other value on different columns.

5.2.2 Data Visualization. To implement visualizations in LokD-
haba, we interviewed political scientists and analyzed media reports
to see which visualizations would be the most useful. Based on this
analysis, we designed the following time-line charts and visualiza-
tions which can be created on-demand by the user for any set of
elections.

COMPASS ’20, June 15–17, 2020, Ecuador Kumar and Narayan, et al.

Figure 5: Browse data to show all position 1 candidates of the
2019 Parliamentary election

(1) Voter turnout: male, female and total voter turnout percent-
ages.

(2) Party vote share (contested): vote share percentage of main
parties for seats they contested. (Not all parties contest all
seats, especially in the presence of seat-sharing agreements.)

(3) Party vote share (all seats): vote share percentage of the
main parties across all seats.

(4) Party seat share: seat share percentage of the main parties.
(5) Parties contested and represented: number of parties that

contested and number of parties that got at least one candidate
elected.

(6) Candidates contested/deposit lost: number of candidates
who contested the election and number of candidates who
lost their deposits.

To enable spatial exploration of election results, we came up with
the following set of maps5. The maps fall into two basic categories:
heat maps showing the intensity of a variable (e.g., vote share of
a party), and categorical maps used to indicate spatial distribution
(e.g., winning party across space).

(1) Constituency type: different colors for constituency type, a
field which can be one of (1) General (open for any one to
contest), (2) SC (scheduled caste candidates only) or (3) ST
(scheduled tribe candidates only).

(2) Number of candidates: a heat map showing number of can-
didates contesting in each constituency.

(3) Voter turnout: a heat map of the voter turnout percentage in
each constituency.

(4) Winners by party: party-wise coloring for the winning party
in each constituency. Parties are mapped to color that are
naturally associated with them, using a small color mapping
file.

(5) Winners by gender: gender-wise coloring for the winner in
each constituency.

(6) Victory margin: a heat map of the difference between the
winner and first runner-up in each constituency.

5As shape files for pre-2008 elections are not available, the current version of LokDhaba
has maps only for elections post-2008.

Figure 6: LokDhaba visualization of parties contested and rep-
resented in national elections

(7) Vote share of winners: a heat map of the vote share percent-
age of the winner in each constituency.

(8) Party-wise positions: a heat map of the rank of the specified
party’s candidates in each constituency.

(9) Party-wise vote share: a heat map of the vote share percent-
age of the specified party’s candidates in each constituency.

(10) NOTA vote: a heat map of the NOTA (None of the Above)
vote share percentage in each constituency.

The data visualization component is designed to visualize aggre-
gated statistics at a temporal or spatial level. The user selects election
type, state name, visualization, and visualization specific variables
to be charted or mapped. The individual visualization components
take returned data from the API to render charts in react-plotly and
maps in react-leaflet.

Some screenshots of the visualization components are shown in
Figs. 6 to 9. Fig. 6 shows the timeline of parties contested and parties
represented over all national assembly assemblies as a bar chart. Fig.
7 shows the vote shares of the “main” parties6.

Figure 8 shows a heat map of vote shares of candidates from
the BJP party in the 17th Parliamentary elections. Fig. 9 shows the
constituencies of elected members to the 17th Parliament, color
coded by party.

5.2.3 Incumbency profile. Indian elections feature candidates who
frequently cross over between parties. Candidates’ affiliations to
parties tend to be based on pragmatic rather than ideological consid-
erations. There is a steady stream of parties splitting and merging,
pre-poll and post-poll coalitions, or candidates crossing over from
one party to another. There is often an anti-incumbency wave, mean-
ing that a ruling party or legislator may have a disadvantage as voters
blame them for poor governance. Assignment of tickets within a
party is also an opaque process, with some parties tending to fa-
vor loyalists, while others preferring to rotate their candidates. It is
therefore very interesting for political scientists to trace the trajec-
tory of individual candidates, and ask who gets nominated, elected,
re-nominated, re-elected, etc.

LokDhaba includes a visualization showing career performance
of elected members or contestants of a specific assembly. In this

6Parties in the top two positions by seat share in any previous election.

LokDhaba : Acquiring, Visualizing and Disseminating Data on Indian Elections COMPASS ’20, June 15–17, 2020, Ecuador

Figure 7: LokDhaba visualization of party vote shares in na-
tional elections

Figure 8: Visualization of constituency-wise vote shares of BJP
candidates in the 2019 national elections

visualization, the user can see the complete record of each contestant,
such as their current and previous party affiliations and electoral
performance. This component is designed to enable the user to
view all elected and major-party candidates clustered together by
party, while also depicting their party affiliation in the immediately
preceding assembly, in order to identify turncoats. Winners and
losers are represented by shape, and the shape can be annotated
with a single number, either the candidate’s number of attempts, or
the number of their victories. Upon hovering on a shape, users can
view prior contest information and a photograph of the candidate. A
search function enables the user to narrow down to a specific person
or constituency of interest. Users can also filter down by gender or
experience, in order to focus on specific subsets of the candidates.

Fig. 10 shows a snapshot of the winners of the 2019 Parliamentary
elections. Fig. 11 shows the search for the name "Rahul" and the

Figure 9: Visualization of the winning party in the 2019 national
elections

Figure 10: Incumbency profile of the 2019 national election win-
ners

Figure 11: Viewing a candidate’s details

resulting information on Mr. Rahul Gandhi of the Indian National
Congress.

COMPASS ’20, June 15–17, 2020, Ecuador Kumar and Narayan, et al.

6 USER FEEDBACK
To get a sense of the usability of LokDhaba, we conducted a survey
with expert political scientists and journalists who have used LokD-
haba7, and received 13 responses. Most users report using LokDhaba
for research purposes (63.6%). Unsurprisingly, close to half of our
respondents use the platform around the time of an election (45.5%).
They report downloading more charts (90%) than maps (54.5%).
Most users prefer working on LokDhaba on a computer rather than
a mobile device (81.8% and 36.4% respectively). Most users report
that it is easy for them to browse the data (81.9%). However, only
63.6% of the users agreed that the visualizations are effective and
only 54.5% report that the incumbency profile is intuitive.

Google Analytics statistics for the period May 2019-2020 (when
there was a national election) showed that there were 10,284 unique
users, with 15,383 sessions. Most of the traffic comes to LokDhaba
directly (73.95%), followed by organic search (12.42%), followed
by social channels like Twitter or Facebook (10.66%), and referrals
from other media sources (3%). 89% of users are from India, 5%
from the United States, and 2% from the United Kingdom. The rest
are from Singapore, Canada, France, U.A.E, Germany and a few
other parts of the world.

7 CONCLUSIONS AND IMPACT
In this paper, we have described the challenges encountered in as-
sembling and maintaining a high-value longitudinal dataset. We have
proposed some solutions, including new tools and best practices to
meet these challenges that we hope will be useful in other domains
as well.

Apart from research contributions, LokDhaba has had substantial
impact on the state of the practice. We describe some of these impact
areas below.

7.1 Application
The first contribution to the practice is that of an open source appli-
cation with a simple user interface to browse and visualize electoral
data. The data as well as the web application is freely available for
download. The LokDhaba application code is maintained as a freely
accessible open source git repository[30] and can easily be used for
other electoral datasets with a First Past the Post system.

7.2 Study of Indian Elections
LokDhaba makes several key contributions to the study of Indian
elections. The first is that it pulls together information from multiple
sources with varying formats. Building from ECI’s statistical reports,
LokDhaba has variables at both the constituency and candidate level.
We have also integrated these with data on individuals’ assets and
crime records. In the future, we expect to bring together several
indicators of social and political behavior, with the aim of enabling
more research on political candidates.

Secondly, through the assignment of unique identifiers, we are
able to track both politicians and political parties over time and
space. Researchers can now ask a wider array of questions about the
career trajectory of politicians, when they defect, to which party and
their subsequent performance.

7Susmeet Jain and Keshav Joshi led the pilot study.

Finally, data on bye-elections has been an important but neglected
part of the electoral process. Bye-elections can now be empirically
studied and evaluated along with the main elections.

7.3 Training and Outreach
LokDhaba also enables several initiatives which we broadly classify
as outreach. The first is as a source of data for other data dissemi-
nation initiatives. We are aware of at least two repositories - Jaano
India8 and the Constituency-Level Election Archive (CLEA) at the
University of Michigan9 - that use the data provided by LokDhaba.

An unexpectedly pleasant use of LokDhaba has been for instruc-
tion in the classroom and for training inter-disciplinary students.
LokDhaba is used to train and encourage students to think criti-
cally about data, spot anomalies, and analyze long-term patterns and
trends. It is used during lectures in classes and in an annual summer
school attended by undergraduate and post-graduate students, pro-
fessionals and journalists. Our outreach demonstrates to our partners
that building datasets is a non-trivial process and requires careful
work in all phases of the data lifecycle.

8 FUTURE WORK
The LokDhaba dataset is being continually updated and is expanding
in terms of integration with other datasets. We plan to build more
map-based visualizations, including some that allow longitudinal
comparison of results (e.g., vote share of parties across successive
elections). We also need to improve our mapping infrastructure and
get more authoritative sources of geo-spatial data. We welcome
collaboration with groups that need to work with election results
data.

ACKNOWLEDGMENTS
We thank the Trivedi Centre for Political Data team: Saloni Bhogale,
Basim-U-Nissa, Kirti, Venkat Prasath, Rajkamal Singh, Sudesh
Singh, Shivangi Tikekar, and Gilles Verniers, as well as Francesca
Jensenius, for useful inputs in the design and implementation of
LokDhaba.

REFERENCES
[1] Sam Asher and Paul Novosad. 2019. Socioeconomic High-resolution Rural-Urban

Geographic Dataset for India (SHRUG). https://doi.org/10.7910/DVN/DPESAK
[2] Rikhil R Bhavnani. 2012. Using Asset Disclosures to Study Politicians Rents: An

Application to India. In Annual Bank Conferences on Development Economics,
Washington, DC, Vol. 22.

[3] Rikhil R Bhavnani and Francesca Refsum Jensenius. 2015. Socio-economic
Profiles for India’s Old Electoral Constituencies: 1971 and 2001.

[4] Harry W Blair. 1973. Minority electoral politics in a North Indian state: aggregate
data analysis and the Muslim community in Bihar, 1952–1972. American political
science review 67, 4 (1973), 1275–1287.

[5] Shankar Bose and VB Singh. 1987. State elections in India: Data handbook on
Vidhan Sabha elections 1952-85.

[6] Paul R Brass. 1978. Indian election studies. South Asia: Journal of South Asian
Studies 1, 2 (1978), 91–108.

[7] Kanchan Chandra. 2016. Democratic dynasties: State, party, and family in con-
temporary Indian politics. Cambridge University Press.

[8] Bikash Chandra Dash. 2004. Civil Society Initiatives and Electoral Reforms.
Economic and Political Weekly (2004), 4136–4137.

[9] Raymond Fisman, Florian Schulz, and Vikrant Vig. 2016. Financial disclosure
and political selection: Evidence from India. Unpublished manuscript, Boston
Univ (2016).

[10] Association for Democratic Reforms. 2019. MyNeta Website. https://myneta.info

8https://jaanoindia.swaniti.org/
9http://www.electiondataarchive.org./

https://doi.org/10.7910/DVN/DPESAK
https://myneta.info

LokDhaba : Acquiring, Visualizing and Disseminating Data on Indian Elections COMPASS ’20, June 15–17, 2020, Ecuador

[11] Center for Monitoring Indian Economy. 2000. CMIE: Economic Overview.
[12] Oliver Heath and Adam Ziegfeld. 2018. Electoral Volatility and Turnout: Party

Entry and Exit in Indian Elections. The Journal of Politics 80, 2 (2018), 570–584.
[13] Election Commission if India. 1995. Bye-elections results 1952-1995. https:

//eci.gov.in/files/file/2511-details-of-bye-elections-from-1952-to-1995/
[14] Election Commission if India. 2019. Detailed Bye-elections results. https:

//eci.gov.in/statistical-report/detailed-bye-election-results/
[15] Francesca R Jensenius and Gilles Verniers. 2017. Studying Indian politics with

large-scale data: Indian election data 1961–today. Studies in Indian Politics 5, 2
(2017), 269–275.

[16] Vadim Kagan, Andrew Stevens, and VS Subrahmanian. 2015. Using twitter
sentiment to forecast the 2013 pakistani election and the 2014 indian election.
IEEE Intelligent Systems 30, 1 (2015), 2–5.

[17] Ken Kollman, Allen Hicken, Daniele Caramani, David Backer, and David Lublin.
2011. Constituency-level elections archive. Ann Arbor, mich.: Center for Political
studies, University of michigan. At http://www. electiondataarchive. org, accessed
may (2011).

[18] Datanet India Private limited. 2019. India Electoral Data. https://www.
electionsinindia.com/

[19] Niti Digital Pvt. Ltd. 2019. India Votes : India‘s largest election database. http:
//www.indiavotes.com/

[20] B. Nissa and M. Kumar. 2019. Notes on methods, identifying and analysing
political parties in Indian elections (working paper). (2019).

[21] M. Kumar Nissa, B. and S. Housekeeper. 2019. Factions and mergers in the Indian
Party System - Evidence from Indian General Elections. (working paper). (2019).

[22] Derek Noonburg. 1995. xpdfreader. https://www.xpdfreader.com/pdftotext-
man.html

[23] Irfan Nooruddin and Pradeep Chhibber. 2008. Unstable politics: fiscal space and
electoral volatility in the Indian states. Comparative Political Studies 41, 8 (2008),
1069–1091.

[24] Election Commission of India. 2019. Statistical Reports to parliamentary and
assembly elections in India. https://eci.gov.in/statistical-report/statistical-reports

[25] Shahabuddin Yaqoob Quraishi. 2014. An undocumented wonder: The great Indian
election. Rupa Publications.

[26] Mahendra Singh Rana. 2006. India Votes: Lok Sabha & Vidhan Sabha Elections
2001-2005. Sarup & Sons.

[27] Nielsen Media Research. 1993. Nielsen Tunes in to Politics: Tracking the Presi-
dential Election Years (1960-1992). Nielsen Media Research.

[28] Sandeep Shastri, Kondaveeti Chinnaya Suri, and Yogendra Yadav. 2009. Elec-
toral politics in Indian states: Lok Sabha elections in 2004 and beyond. Oxford
University Press.

[29] Sanjeev Kumar Singh. 2018. ELECTION CAMPAIGN MANAGEMENT
SERVICES–A START OF NEW ERA IN INDIAN POLITICS. (2018).

[30] TCPD. 2020. Github repository for the Lokdhaba framework. https://github.com/
tcpd/LokDhaba_JS

[31] TCPD. 2020. Github repository for the Surf codebase. https://github.com/tcpd/surf
[32] Datameet Trust. 2019. Github repository for open maps. Bangalore, India.

https://github.com/datameet/maps
[33] Milan Vaishnav. 2017. When crime pays: Money and muscle in Indian politics.

Yale University Press.

https://eci.gov.in/files/file/2511-details-of-bye-elections-from-1952-to-1995/
https://eci.gov.in/files/file/2511-details-of-bye-elections-from-1952-to-1995/
https://eci.gov.in/statistical-report/detailed-bye-election-results/
https://eci.gov.in/statistical-report/detailed-bye-election-results/
https://www.electionsinindia.com/
https://www.electionsinindia.com/
http://www.indiavotes.com/
http://www.indiavotes.com/
https://www.xpdfreader.com/pdftotext-man.html
https://www.xpdfreader.com/pdftotext-man.html
https://eci.gov.in/statistical-report/statistical-reports
https://github.com/tcpd/LokDhaba_JS
https://github.com/tcpd/LokDhaba_JS
https://github.com/tcpd/surf
https://github.com/datameet/maps

	Abstract
	1 Introduction
	2 Related Work
	3 Data Extraction on Longitudinal Data
	3.1 Format Drift
	3.2 Data Extraction and Parsing Pipeline

	4 Data Management and Integration
	4.1 Structuring Election Results
	4.2 Primary and Derived Data
	4.3 Fragmented Elections and Bye-elections
	4.4 Unique Identifiers for Names
	4.5 Integration with Other Datasets
	4.6 Maps
	4.7 Data Provenance and Management

	5 Data Dissemination
	5.1 Data Preparation
	5.2 User Interface

	6 User Feedback
	7 Conclusions and Impact
	7.1 Application
	7.2 Study of Indian Elections
	7.3 Training and Outreach

	8 Future Work
	Acknowledgments
	References

