CS 221 Programming Assignment:
Othello

¥ Team Desdemona 3

Karen “Learningishka” Corby
Lilly “Hash-Meisterin” Irani
Patrick “O’Regan” Perry
Luke “Bit Boarder” Swartz

27 November 2002

Abstract

Our Othello program implements an optimized iterative deepening alpha-beta pruning search
algorithm with cached states, using a combination of “complex” features (such as mobility
approximation and corner heuristics) and “simple” features (patterns of discs), weighted using an
online stochastic gradient descent learning algorithm with exponential summing. While the program
had mediocre performance in tournament play, we experimented with a number of both previously
documented and innovative techniques which, upon greater fine-tuning, could produce excellent
results.

0 Introduction and Goals

Artificial Intelligence researchers and programmers have been trying to program computers
to play the board game Othello since nearly the game’s “invention” (or, rather, refinement of the
older British game Reversi) in 1971 (Buro 2002, Anderson 2002). Many advanced Al techniques can
be employed on Othello, and its relatively small search space and complexity compared to chess
make it possible to beat human opponents without massive computing resources. This paper
describes DESDEMONA, a program that plays a modified version of Othello (with a 10 x 10 board
with “chunks” cut out of the sides, as described in the CS 221 assignment handout). The program
encompasses four main modules, each with a separate goal: the search algorithm (section 1), whose

goal is to search through as many good board states as possible, the evaluation features (section 2),



whose goal is to represent relevant aspects of board states, the learning algorithm (section 3), whose
goal is to weight the features according to their relative importance throughout the game, and the
simple features (section 4), an innovative approach to features and feature weighting, whose goal is
to augment and/or duplicate the standard evaluation features and learning algorithm. We also detail,
in section 5, what improvements we might make on the program.

1 Search

1.1 Basic Search Algorithm

The search algorithm is a standard minimax search, augmented by alpha-beta pruning (as
described in Russell and Norvig 2002). As everyone was required to implement this for the
milestone, we shall not go into detail about this baseline, except to note that alpha-beta pruning
greatly improves performance by drastically cutting the number of nodes to be searched. Note that
there are apparently some minor “improvements” on alpha-beta pruning, such as Nega-Max
(mentioned in Anderson 2002), but we did not pursue these.

1.2.0 Time Strategy

DESDEMONA allocates the total time allotted uniformly across all moves. For example, if
there are 100 seconds of play left, and 20 more moves to make, each move will be given 5 seconds
of computation. When either player passes, the move count is updated accordingly. That is, every
time the opponent passes twice, we have to make one more move, and every time we pass twice, we
have to make one less move.

This uniform allocation is admittedly naive, as moves towards the end of the game take less
computation time, and as moves in the middle of the game are more important than moves at the
beginning. A simple extension would be to give end and beginning moves less weight in
determining the time allocation, thereby making sure that the moves deserving more computation
time actually gez more computation time. Another extension, described in Cheung, Chi and Pang
(2001), is to “save” a certain amount of time for a final end-game search, allowing “perfect play” for
the last few moves. A more ambitious extension would be to use machine learning to determine the
timing weights rather than hand-tuning them.

1.2.1 Iterative Deepening

The goal of the move selection stage is to expand the game tree to the farthest level possible
in the time allotted. Depth-first search (DFS) with a fixed look-ahead is surely not the optimal
solution to the maximum depth problem, as it is likely to overstep or underutilize the computation
time available. Itis thus desirable to have search at variable depths, depending on the move itself.
Breadth-first search (BFS) may seem to be a plausible solution at first, as the entire tree is expanded
one level at a time. However, memory restrictions (O(4*"), where 4 is the branching factor, and dis
the depth) prohibit using this strategy.

The strategy we chose, iterative deepening, combines the uniform expansion of BES with the
small memory requirement of DFS. The algorithm is as follows: First, use DES to expand the game



tree to depth 1. As long as we have time left, increment the depth by one, start from the root, and
use DFS to expand the tree to the new, incremented depth.

The reader will note that nodes near the root of the tree are expanded multiple times. This
may seem inefficient, but the difference in computation between search to depth 4 and searching to
depth 4 + 7 is an order of magnitude—the repeated computation is insignificant relative to the total
computation time.

1.3 Caching with Transposition Tables

In many board games, multiple paths can lead to the same board state. Because in Othello,
the final piece difference determines a win without regard to the path taken to that state, game board
states that are identical must have the same expected final value, given an evaluation function that
remains constant for the duration of the game. Thus, it makes sense to cache board states along with
the value they were found to evaluate to after some lookahead search so that if the same state is
encountered again, the cached value can be used.

However, only caching board values for which we have found exact values at a given
lookahead limits us. Using alpha-beta search, we would hope to be able to prune a great number of
subtrees to speed up our search. Pruning a sub-tree, however, means that we cannot give an exact
value to the parent node whose children were pruned. However, we can take advantage what little
we do know — that the parent has soe child with a value we have determined through search and
application of our evaluation function. In a given search tree context, finding a board state cached
with a non-exact value may still be enough to allow us to discontinue search down that path if:

1. We are the maximizing player and a possible successor is found to have a subtree valued
lower than our current best option.

2. We are the minimizing player and a possible successor is found to have a subtree valued
higher than our current “best” option (the option that would give the lowest value for
the maximizing player.

To capitalize on these observations, our transposition table elements track boards for which
we have an exact value, as well as the best subtree found for a node whose child(ren) is pruned and

the distinction between the two types is maintained.

1.3.1 Hash Functions

We considered several options for hashing our board. We considered a good hash function
to be quick to execute, and uniformly distributed. To satisfy the first constraint, we tried to come
up with functions that avoid expensive operations such as mod, multiply, or divide. In order to
achieve uniform distrubution, we began by trying to think about higher-level features than simply
the bits in the board as a string, since we intuited that high-level features would distinguish between
boards and thus yield greater distribution.

Obur first idea for a hash function was to take advantage of our proposed evaluation function
structure. We had planned to evaluate based on 12 features, and the hash key would be 12
concatenated bits where bit, is determined by whether feature; is above or below a certain threshold.



This hash function would be expensive to implement, however, because the evaluation function
would have to be executed for every lookup.

In searching for alternatives, we found an approach used in chess called the Zobrist Key
(Moreland 2001). The Zobrist Key keeps a three-dimensional array where each <board row, board
column, player> tuple has a corresponding randomly generated 32-bit integer. A key is generated by
beginning with 0 and XORing the random number corresponding to every piece on the board as
described by the above tuple.

This key algorithm has several strengths. Because it is based on random numbers and the
XOR operator, it achieves a broad distribution and the hash keys are unrelated characteristics
inherent to the board. Also, XOR is a fast operation.

Also, while a naive implementation would generate a key for each board by going through
each space and accumulating the key, an efficient implementation can exploit the fact that (a * b) * b
= a so that each board lookup only requires a single XOR. At the beginning of the Othello game, we
generate a key for the given board start configuration with four pieces and pass that initial key to the
search function. The search function simply XORs the appropriate random number 7, for the piece
added to the successor board before looking up the successor. In order to generate a key for the
next successot, simply XOR 7, again to “remove” the piece addition just explored and XOR the next
appropriate random value to lookup the board state with the next possible key addition.

We used Quantify to profile our code and found that replacing the naive implementation of
key generation with the incremental method made one of our more time consuming methods one
practically inconsequential.

1.3.2 Significance of Transposition Table with Iterative Deepening

Because iterative deepening makes successively deeper searches, and we just restart each
search instead of storing a fringe, we have to clear the transposition table after every increment in
the iterative deepening search. Otherwise, the transposition table will provide the evaluation
function value for a board instead of taking the opportunity to search further and obtain a more
accurate estimation.

1.3.3 Systems Notes

We tried to implement the hash table as leanly as possible. We used STL and linked in a
C++ module, having great faith in the powers of Bjarne Stroustrup. We tried to implementation
strategies. The first strategy depended heavily on copying information off of the stack and involved
very little allocation that wasn’t already done by DoMove. Our hope was that this strategy would
reduce the need for heap allocation calls and thus demand less run-time cycles and prevent memory
fragmentation. This implementation also made tracking and freeing boards very difficult, however,
and we hemmoraged memory

By profiling in quantify, we found clearing the board to be of significant overhead so we
experimented with various memory management policies.



Histogram of Depths Reached Under
Experimental Conditions

16

a3
14 m4
as
06
10 m7

12

mo
010
mi1
w12
013
i il B 014

‘ |15
Trans. Tbl. w/o "Good Customer" No Trans. Tbl. Bmi6

memory freeing trans table _

o N b~ O

Experimental Conditions

We tested the transposition table both with and without freeing memory. (We dub the
memory freeing approach as the “good customer” policy.) We found that the transposition table
that did not free memory reached an average depth of 8.205 on epic machines. Freeing memory we
obtained average depth of 8.25 on epic and without a transposition table, we obtained an average
depth of 7.5, gaining us about 1-ply of depth on epic. Epic machines are among the slowest in Sweet
Hall so the benefit of transposition tables would likely increase with machine speed.

Our fear that freeing and allocating memory would come at the cost of search depth was
false. Not freeing did not incur a significant difference, though we feared that it would cause paging
and therefore a slowdown in the system. The client has about a 47 MB memory footprint on a
machine with at least 256 MB RAM, so memory is not scarce.

1.4 Other Search Enhancements

The search enhancements described above do not change the result of a board exploration,
but instead only speed up search without adding uncertainty to our result. We explored another
approach to pruning by Michael Buro (1995a and 1997b) called Multi-Prob Cut. ProbCut is based
on the principle that, given some non-zero choice of a reasonable margin of error, one can use linear
regression to find models predicting the value of a game state should it be searched to depth / by
using the game state value at some depth 4 < /. Subtrees which appear to be bad enough that, with
some probability, we would not choose them should we search them entirely are then
probabilistically pruned.



This method posed a practical challenge because running a linear regression to discover
suitable models requires a stable, reliable evaluation function. Though we researched this method in
depth, we failed to stabilize our evaluation function soon enough to run a regression and test the
method with our implementation.

1.4 BitBoards and Optimization

The stock method of searching for valid board states (iterating over every square on the
board, passing it to IsLegalMove) is fairly computationally expensive. Moreover, it overlooks a
simple fact: all legal moves are in empty squares adjacent to one of the opponents’ discs.

Thus, we implemented the BitBoard approach described in Cheung, Chi and Pang (2001), in
which each board state is represented by two BitBoard structures (internally stored as arrays of 13
byte-length characters). Below, the board on the left would be represented by the two BitBoards on
the right, representing the white and black discs, respectively. All other spaces are 0.

1 1
1 1

In keeping with Cheung, Chi, and Pang, we also pre-compute an array of AdjacencyTables,
which store BitBoards of the adjacent squares to each square on the board. For example, the
following is the AdjacencyTable for (2, 2):

Thus, the potentially legal moves are all to be found on the BitBoard represented by the
union of AdjacencyTable(x, y) [ = (RedBitBoard(x, y) U WhiteBitBoard(x, ) over all x and y. Not
only does this speed up the search so as to allow over one ply extra search (see figure, below), but it
is useful as an evaluation function metric in itself (described in section 2.2).



Average ply-depth

BitBoards on

BitBoards off

2 BEvaluation Features

Given the search algorithm described above, what is the search searching for? Certainly end-
game states should prefer high disc differentials (i.e. the “greedy” heuristic), as that is how one wins,
but such a heuristic does not (necessarily) correspond with good game states in the early stages of
the game, or even the mid-game. In fact, many human Othello strategy guides suggest that one
should minimize the number of one’s pieces eatly in the game.

2.1 Othello Evaluation Features for Humans

To get a sense for what game states are preferable in Othello, we consulted a number of strategy
guides intended for human players (Feinstein, Lazard 1993, le Comte 2000, Mendelson 2001,
Othello University). Each of them stressed three primary goals (beyond disc difference at the end of
the game):

1. Mobility — One should maximize the number of moves one has, and minimize the number
of moves available to one’s opponent. Some of the guides stress using the “frontier” or
“fringe” discs (i.e. discs that are next to empty squares) as an easy metric for mobility, as
each move must be on an empty square next to an opponent’s disc.

2. Stability — One should aim for “stable” (i.e. un-flippable) discs. The corners are the most
obvious stable positions, upon which one can establish rows, columns, and/or diagonals of
likewise stable discs.

3. Parity — As the last player to put down a disc (both in a closed region and overall) flips last,
one should favor situations in which one is the last to flip.



2.2 Implemented “Complex” Features

The submitted version of DESDEMONA includes eight “complex” features, each designed to
model one or more of the human metrics (mobility, stability, and parity). We called these human-
specified features “complex” to distinguish them from “simple” features, which are based on
machine-learned patterns. As we went through several iterations of “simple” features, and they do
not use the standard learning algorithm, they shall be described later (in Section 4).

1. Corners heuristic — We used a slightly more advanced version than merely weighting the
corners; instead, we used the Cheung, Chi and Pang (2001) technique of summing the square
of the number of corners in each quadrant. This is based on the assumption that it is better
to completely own a quadrant’s corners than to own disparate corners throughout the
board—making this a good stability metric.

2. “Dumb” X Squares — X squares in Othello are those that are next to corners but not on an
edge. In traditional Othello, thus, there are only four X squares; in our modified version, it
depends on how one counts. We used the same X squares as Cheung, Chi and Pang (2001),
that is, the black discs in the figure below.

Gl laE
L.AL A Ay A 4N

In hindsight, we should have probably also included the white squares as well; however, by
the strict definition of X square, the squares next to the “cutouts” (and thus, at least
technically, on the “edge”) perhaps should not be counted. We shall take up this dilemma
again in section 4.

We call this feature “Dumb” X Squares in keeping with Wang, Hisenberg and Vadera, as the
metric is the number of X squares for which one does not already have the adjacent corner.
Since playing in X squares when one does not own the corner usually allows the opponent to
take that corner, this is usually weighted negatively, as owning the corner is usually good for

stability.

3. “Smart” X Squares — This is essentially the same as the previously described metric, except
that square are counted on if one does own the adjacent corner. This is generally a positive
metric (as it enhances stability).

4. C Squares — C squares are squares adjacent to corners which are on the edge (see figure
below). Because edge squares are often useful in stability in their own right, these squares
intuitively are less dangerous than X squares, although they do endanger the corners.




Once again, there is some question about what should count as a C versus X square in our
altered board, but note that in hindsight, whether one should play in a C square or not
depends not on the stage of the game (or even if one owns the corner) but rather on the
entire edge situation, making this a less-than-optimal metric. We shall return to this dillema
in section 4.

5. Stability Edge Heuristic — In attempt to compensate for potentially poor edge play, we
adapted a technique from McAlister and Wright (2000) in which one sums up the number of
discs one has in a row in each edge, and adds the number of discs in a row in the adjacent
rows/columns. This did not seem to vastly improve edge play, we believe largely because of
the dilemmas mentioned regarding the X and C squares.

6. Potential Mobility — The “potential legal moves” speedup described in section 1.4 allows one
a very simple metric for measuring each side’s potential mobility: simply calculate the
potential legal moves (i.e. how many blank squares there are next to the opposite side’s
squares), and consider how many there are. Thus, potential mobility is
| whitePotentiallLegalMoves | — |redPotentiallLegalMoves |, where each is a BitBoard. This is
relatively fast, and banks on calculations we are already doing in order to speed up the search
algorithm.

7. Current Side — This function returns a 1 if it is white’s turn and -1 if it is red’s turn. We
learned that it is much more important for it to be your turn later in the game than in earlier
stages. Thus, this—very roughly—approximates parity, although ideally we would consider
parity within “closed” regions, and also account for players passing turns.

8. Disc Difference — At the end of the game, the only important thing is who has more discs:
thus, we keep the greedy calculation in, as it has increasing importance (up until the end,
when it is the only factor).

3 Machine Learning

How do we combine these evaluation features into one evaluation function? For each
feature, we used machine learning to determine how much relative weight it should hold.

3.1 Learning Method

After researching the different types of reinforced learning, we decided to implement an
online stochastic gradient descent algorithm. As an extension to the basic method, we choose to use
exponential summing.

In the early stages of our planning, we considered using a batch training algorithm to adjust
our weights. This method minimizes the total error of the training set and would allow different
processes of our program to train on different states in parallel (since it is only after all the states of a
stage are processed—and their net error calculated—do we adjust the weights for that iteration).



In comparison to batch gradient descent, online stochastic gradient descent, which adjusts
the weights after each state it sees, has several compelling advantages.

First, because online stochastic gradient descent adjusts the weights after each state it trains
on, the algorithm has significantly more reasonable weights after seeing some reasonable portion of
the training data. Thus, since we adjust more often and the date from each training state has the
benefit of being compared to our best weight data at the time, convergence has the possibility of
occurring sooner with less iterations.

Second, since we do alter our weights after each individual state and each state provides a
gradient that is in a slightly different direction than the last, we avoid taking large steps in a single
direction and falling victim to a local maxima or minima as we would in batch gradient descent.
Since each state takes us in a slightly different direction, we are less likely to move directly towards a
local extrema and hence less like to get “stuck.”

Our base calculation for each game state that we trained on was:

w, =V,
where:

w,_weight of feature 7

A — learning rate (around the magnitude of 0.5)

v"- value of the state after having taken some action « and the opponent
following by taking action '

V(5)— value given by the evaluation function on state s

fi— value of feature /in state s

Note that »" was taken by determining what action (via the minmax tree) should be taken at
state s (where the end state values were the piece differential) and then what reactionary step our
opponent would take. The value of the resulting state was 2"

This resembles METHOD 1 of the handout. After trying METHOD 2 on a few stages
without any significant gain, we decided to use METHOD 1 to train.

The method described above trains off the immediate states following s. This is reasonable
since one can argue that immediate gains and loses are felt more quickly and can more quickly
determine the direction (and eventual success) in a game. However, it is also important to take into
consideration the value of game states much further into game (since these more accurately reflect
the value of the end states). To achieve a blend of these in our final training implementation, we
choose to incorporate exponential summing of the states on the path going down the tree 10 of our
moves:

Z]JH_:)\.(W'—V(J))]{+)\,2(ﬁ”—V(‘f)>]f + . +}\,1O(ﬂ”””””—V(J>)]€

3.2 The Stages and Training

We split the game into 22 stages where each stage was 4 moves long. To start the training,
we trained the end game stages (the last two) and used a lookahead that allowed the search to go all
the way to the end game nodes. For these stages, we used random initial weights and with a
relatively large lambda (0.6). We gradually decreased the lambda to 0.1. The rate at which we
decreased lambda was determined by experimentation for each stage.



We then choose initial weights for the earlier stages based on the ones in the stage just
trained in order to aid convergence. (We initialized stage 18 with stage 19’s converged weights). In
these stages we used a lookahead of 4 (since that was enough for us to get to a new, already
calculated, stage).

The training set of stages that we trained off of were 600 games saved at different points and
played from start to finish where each player took a “smart” move 50% of the time (using the smart
evaluation function from the milestone) and a random move the other 50% of the time. We then
started at the appropriate state into the game

Because of the AFS crash the night before the program was due, the weights of the earlier
stages were hand tweaked to estimate convergence.

—e— Current Side
—=— Corners
% Mobility
2 Dumb X Squares
E’ % v A | ¥ SmartX Squares
g 0 TN —e— C Squares
-10 345678 910111213141516171819202122 . stability
-20 —— Disk Differential
-30 -
-40
Stage

4 Simple Features

In various papers, Buro (1995b, 1997a) presents a convincing argument for using a collection
of “simple” features—essentially, combinations of 4 to 8 disc patterns—rather than more complex,
calculated features. In more recent papers (notably, Buro 1997b), Buro even advocates that such
features can replace, not merely augment, complex features, since most complex features are based on
simpler patterns. In essence, the “simple feature” technique not only produces faster results than
complex features (as it requires relatively little computation), but it also can find relevant patterns
that go beyond simple calculations such as mobility and board squares.

Our eatrlier dilemma, that of various corner, X, and C square metrics depending on edge
configurations, can perhaps be solved using simple features: One could consider each possible
combination of the edge squares, and thus make intelligent choices about each kind of square,
depending upon which of its neighbors belong to whom.

4.1 Our Simple Feature Space




Inspired by LOGISTELLO’s various features for the standard 8 x 8 Othello board (described
in various Buro papers) as well as other programs such as KEYANO (Brockington 1997) and ZEBRA
(Anderson 2002), we arrived at the following twelve simple features:

7-lenath corner edae 3 x 3 corner 4-lenath diagonal #1 4-lenagth diagonal #2
I I
7-lenath diagonal 8-length diagonal 9-lenath diagonal 10-length diagonal
00000000
10-lenath horiz/vert #1 10-lenath horiz/vert #2 10-lenath horiz/vert #3 8-lenath horiz/vert

Note that, in hindsight, we might have included another feature, which would aid more readily in the
X/C square dillema (as it expressly includes all the X and C squates on one edge):

new feature?



4.1.2 Assigning Values to Features

In order for these features to contribute to an evaluation function, however, we would need
to assign values to specific configurations of features. We experimented with a number of ways of
doing so, as well as a number of ways of combining these values once they are calculated.

4.1.2.1 Arbitrary Assighment

The simplest technique would be to assign each instance to a number; for example, one
could use the simple technique (Buro 1997a) of assigning a 0, 1, or 2 to each square (for white, red,
and empty) and take the base-3 sum of the squares. Thus, each configuration would correspond to a
unique number.

However, this does not take symmetry into account; for example, in the 4-length diagonals,
the arrangement [WHITE, blank, blank, blank] should be considered the same as [blank, blank,
blank, WHITE]. We came up with an algorithm that assigned a unique number to each symmetrically
unigue configuration. As each of the simple features would likely interact with each other, we
considered combining them in a neural net (whose hidden layer would allow weights not just for
individual features, but for combinations of features).

Nevertheless, if each instance of the pattern is assigned to an arbitrary index, then there will
be no consistency between those indices. Put another way, the Hamming distance (i.e. numbers of
bits that differ) will not correspond to any real factor, and thus it will be difficult (if not impossible)
for the neural net to find appropriate patterns.

4.1.2.2 Disc-Level Symmetry

We next experimented with (and actually coded) a version that assigned numbers based on
individual disc symmetry; thus, each feature had a certain number of “sub-features” based on the
number of symmetric and non-symmetric discs. For example, one of the sub-features for the 3 x 3
corner is the following:

1 2

While this may seem like simple square weighting, it is somewhat more complicated, in that
the values of the squares labeled 1, 2, 3, and 4 were summed up using a lookup table, in order to
distinguish the symmetric pairs of owning {(1 and 3), (2 and 4)} from {(1 and 2), (2 and 3), (3 and
4), (4 and 1)}. We fed each adjusted disc sum into a neural net, and trained it based on calculated
disc differentials (in a technique similar to that described in Buro 1997b).

However, this technique did not yield good results: Partly, this is because there are too many
inputs, which do not vary considerably. Moreover, in our attempt to allow for interactions between
features, we broke down the “walls” that define the features to begin with, thus making the metric
similar to square weighting, even if it is more nuanced.



4.1.2.3 Individual Feature Values

We finally settled on calculating value metrics for individual features, inspired by the
KEYANO program (Brockington 1997), which used a software package of Adaptive Logic Networks.
The technique is simple: feed disc information about only oze feature into the neural network, and
train on the disc difference, as before. If the feature is good, then disc difference will correlate
with certain configurations, which the network can learn.

What should one feed this specialized neural network? One can either choose the arbitrary
disc-by-disc LOGISTELLO method, or one involving symmetries. We ultimately used the disc-by-disc
method for speed, but we also implemented a function which would take an ordered list of squares,
such as those below, and calculate the number of symmetric and non-symmetric squares

415|167 6|7]8 4 4

3 3[5]9 3 3
2 2|1]4 2 2
1 1 1
1 1
2 2

3 3

4 4

Symmetric squares would be added up, thus ensuring that 4-length diagonals [WRRR] and
[RRRW], for example, would both total to the same values (1 W on the outside, 1 R on the outside,
and two reds on the inside). In order to distinguish non-symmetric configurations which have the
same “symmetric sums,” such as [WRWR] and [WRRW], we also calculated the number of runs
and/or the length of the longest run (where a “run” is an uninterrupted string of discs of one color
or another). Thus, we achieve Hamming distances between configurations that correspond to actual
symmetries and meaningful configurations! (However, as noted earlier, the submitted version of
DESDEMONA does not use these symmetric calculations, due to time constraints...note also that it
would be possible to #ain on the symmetric calculations but szore the disc-by-disc sum, thus having
the best of both worlds, but this is not yet implemented.)

The alternate version (not in the submitted program) is illustrated below:

Neural
net for
4x1
feature

L Convert into
—> symmetric

feature inputs

—P Final disc

difference

vy




4.2 Table Lookup

While we experimented with neural nets, both for ease of training as well as for speed in
lookup, we used a simple table for the submitted version of DESDEMONA. The structure of the
table is illustrated below.

T \ Lookup table

T forax1
) feature — Final disc
(filled in with difference

a / symmetries)
2

How did we train the table values? For each configuration of a simple feature, we calculate
the expected disc differential in the end of the game. For example, one possible configuration of the
length 4 diagonal from (0, 3) to (3, 0) is RRWR. Using a generated database of Othello games, we
calculate the expected final disc differential given that the diagonal is RRWR. This computation is
done prior to the game, and thus finding expected disc differential during play only requires a simple
lookup.

Ideally, one would calculate the expectations based on “good” games, ones typical of
tournament Othello play. Here, a chicken and egg problem arises: we need a good Othello program
to generate a database of good games, and we need a database of good games to get a good Othello
program. Also, we need a large game database to make sure that each possible configuration
appears in the games. If a configuration does not appear, we have no way of calculating an
expectation for it, and we will not know what to do when the configuration arises in tournament
play. Because of this, and because of time constraints, we chose to train on 10,000 “random”
games. At every stage in the game, each player chose a move at random from all legal moves. The
random database was fast and easy to generate, and it contained instances of most feature
configurations.

We took full advantage of the inherent symmetries of the Othello board when calculating
the expected disc differentials. From each board state, we generated 16 total board states using the 8
symmetries of the board, along with the states obtained by switching white discs with red discs. So,
for a database of 10,000 games, each of which had about 88 moves, we were able to generate 10,000
* 88 * 16 = 14,080,000 game states with final disc counts. The expected disc differentials for a
configuration were calculated by taking the average of the final disc counts of the game states in
which the configuration appeared. In addition to the benefit of more game states, adding the
symmetries of the board guaranteed that symmetric states had the same expected disc differential.

Of course, once we were able to calculate expected disc differential from a game state, we
needed a way to access these values. Feature lookup was performed by treating each configuration
as a ternary number. If a feature had n squares, we chose an ordering of the squares, and then
assigned WHITE a value of 0, RED a value of 1, and EMPTY a value of 2. In this way, a unique
number could be computed for each configuration, and the expected disc-differential lookup could




be done by indexing into an array containing 3"’ — 7 expectations. In practice, to speed up
computation, we treated each configuration as a quaternary number, and thus could calculate the
index using only bit operations and no multiplications.

4.3 Combination and Integration with “Complex” Features

How to combine these individual feature values? In one paper (1997b), Michael Buro
describes combining simple features like DESDEMONA’s into one feature using a technique similar to
a neural network. The neural network has the advantage of taking into account complex feature
interactions. Unfortunately, due to a file-server crash, we were unable to train a network, so we
were forced to come up with a hand-tuned solution. We chose to average our 10 simple features to
get an estimate of final disc differential. In testing, this proved to be a better feature in the early
stages of a game than the greedy heuristic.

While the “simple” features were designed to replace some of the “complex” features, the
“complex” features were left in the final submitted program, and a simple weight of 80% complex
and 20% simple features was decided upon, given the nascent stage of the simple features metrics.
With more training (perhaps on a neural net) and tweaking, likely the simple features could
contribute more to the final evaluation function.

6 Performance and Future Research

As noted in the abstract, our program performed at a mediocre level in the tournament,
losing three games and winning one in the first round. While the program seemed to be searching
fairly deep through the tree, many of its choices seemed poor, likely due to our inability to fully train
the program on all game stages. For future research, we of course would like to try completing the
training process! We would have also liked to implement an “opening book,” found in many strong
programs (e.g. Buro 1999, Cheung, Chi and Pang 2001), to essentially cache a large database
containing the first few moves of the game, such that one can spend nearly no time on the first few
moves, yet still search fairly deep through the tree. Naturally, such functionality would depend on a
strong, stable evaluation function, which was not available at the time (even though all the
transposition table mechanism for implementing it was in place). Finally, it seems that a more
thorough approach to the “simple” features, perhaps augmented by training on neural nets (even if
they are not used for actual lookup of feature values), would be able to replace all of our search
features, except perhaps the Potential Mobility heuristic (which is useful in speeding up search

anyway).



Works Cited/Consulted

Anderson, G. 2002. The Inner Workings of Strong Othello Programs.
http:/ /www.nada.kth.se/~gunnar/howto.html

Buro, M. 1995a. ProbCut: An Effective Selective Extension of the Alpha-Beta Algorithm. ICCA
Journal 18(2), 71-7.
http:/ /www.cs.ualberta.ca/~mburo/publications.html

Buro, M. 1995b. Statistical Feature Combination for the Evaluation of Game Positions. Journal of
Artificial Intelligence Research 3, 373-382.

Buro, M. 1997a. An Evaluation Function for Othello Based on Statistics. NECI Technical Report
#31.

Buro, M. 1997b. Experiments with Multi-ProbCut and a New High-Quality Evaluation Function
for Othello. Workshop on game-tree search, NECI, August 1997.

Buro, M. 1998. From Simple Features to Sophisticated Evaluation Functions. The First International
Conference on Computers and Games (CG *98), Tsukuba, Japan.

Buro, M. 1999. Toward Opening Book Learning. ICCA Journal 22(2), 98-102, reprinted in: Ganmses
in Al Research, H.J. van den Herik, H. Iida (ed.), 2000, and in: Machines That Learn to Play Games, ].
Firnkranz and M. Kubat (ed.), 2001.

Buro, M. 2002. The Evolution of Strong Othello Programs. Proceedings of the IVEC-2002 Workshop
on Entertainment Computing, Makuhari, Japan

Brockington, M. G. 1997. KEYANO Unplugged — The Construction of an Othello Program.
Technical Report 97-05, Department of Computing Science, University of Alberta.
http://www.cs.ualberta.ca/~games/keyano/

Cheung, A., Chi, A. and Pang, J. 2001. CS221 Othello Project Report: Lap Fung the Tortoise.
http:/ /www.stanford.edu/~hcpang/othello.html

Feinstein, J. Othello Pages. http://www.maths.nott.ac.uk/othello/index.html

le Comte, M. 2000. The strategy to winning Othello. Introduction to Othello. Nederlandse Othello
Vereniging (The Dutch Othello Federation)
http:/ /www.othello.nl/guides/comteguide/strategy.html

Lazard, E. 1993. Othello Strategy Guide. Translated by C. Springer. Federation Francaise
d’Othello (French Othello Federation.
http:/ /homepages.compuserve.de/othelloclub/strategy1.html [among other locations]



Lee, K. F. and Mahajan, S. 1990. The Development of a World Class Othello Program. _Arsfcial
Intelligence 36, 1-25.

McAlister, J. and Wright, D. 2000. Rocket Monkey Deathmobile. [CS 221 Writeup.]
http://bigmac.stanford.edu/

Mendelson, J. 2001. Jonathan’s Reversi Page http://www.mathjmendl.org/reversi.html
Morteland, B. 2001. Zobrist Keys. http://www.seanet.com/~brucemo/topics/zobtist.htm
Othello University. Othello Strategy. http://home.nc.rr.com/othello/strategy/

Russell, S. J. and Noxrvig, P. 2002. Artificial Intelligence: A Modern Approach, Second Edition. Pearson
Education, Inc.

Scapel, N. and Mazzella, F. 1999. Programming Assigment #2 — Othello: The French Connection.
http://movement.stanford.edu/nico/othello/Othello.html

Sweetkind-Singer, J. A. 2000. Combining Reinforcement Learning With Genetic Algorithms To
Produce An Othello-Playing Program. http://www.stanford.edu/~singer/Papers/papers.html

Wang, P., Eisenberg, L., and Vadera, K. Perversi: CS 221 Othello Project.
http:/ /www.google.com/search?sourceid=navclient-
menuext&q=cache:http%3A//www.stanford.edu/~pxwang/OthelloWriteUp.pdf

[Note: our team’s “working bibliography” is online at http://xenon.stanford.edu/~Iswartz/cs221/
and includes basic notes that we used when developing our program. We’d also like to thank the
teaching staff, especially Mykel Kochenderfer, for their help throughout the project.]



