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ABSTRACT
Data visualization is by far the most commonly used mechanism to
explore and extract insights from datasets, especially by novice data
scientists. And yet, current visual analytics tools are rather limited
in their ability to operate on collections of visualizations—by com-
posing, filtering, comparing, and sorting them—to find those that
depict desired trends or patterns. The process of visual data ex-
ploration remains a tedious process of trial-and-error. We propose
zenvisage, a visual analytics platform for effortlessly finding de-
sired visual patterns from large datasets. We introduce zenvisage’s
general purpose visual exploration language, ZQL ("zee-quel") for
specifying the desired visual patterns, drawing from use-cases in a
variety of domains, including biology, mechanical engineering, cli-
mate science, and commerce. We formalize the expressiveness of
ZQL via a visual exploration algebra—an algebra on collections of
visualizations—and demonstrate that ZQL is as expressive as that
algebra. zenvisage exposes an interactive front-end that supports
the issuing of ZQL queries, and also supports interactions that are
“short-cuts” to certain commonly used ZQL queries. To execute
these queries, zenvisage uses a novel ZQL graph-based query opti-
mizer that leverages a suite of optimizations tailored to the goal of
processing collections of visualizations in certain pre-defined ways.
Lastly, a user survey and study demonstrates that data scientists are
able to effectively use zenvisage to eliminate error-prone and te-
dious exploration and directly identify desired visualizations.

1. INTRODUCTION
Interactive visualization tools, such as Tableau [3] and Spot-

fire [2], have paved the way for the democratization of data ex-
ploration and data science. These tools have witnessed an ever-
expanding user base—as a concrete example, Tableau’s revenues
last year were in the hundreds of millions of US Dollars and is ex-
pected to reach tens of billions soon [6]. Using such tools, or even
tools like Microsoft Excel, the standard data analysis recipe is as
follows: the data scientists load a dataset into the tool, select visu-
alizations to examine, study the results, and then repeat the process
until they find ones that match their desired pattern or need. Thus,
using this repeated process of manual examination, or trial-and-
error, data scientists are able to formulate and test hypothesis, and
derive insights. The key premise of this work is that to find desired
patterns in datasets, manual examination of each visualization in
a collection is simply unsustainable, especially on large, complex
datasets. Even on moderately sized datasets, a data scientist may
need to examine as many as tens of thousands of visualizations, all
to test a single hypothesis, a severe impediment to data exploration.

To illustrate, we describe the challenges of several collaborator
groups who have been hobbled by the ineffectiveness of current
data exploration tools:

Case Study 1: Engineering Data Analysis. Battery scientists at
Carnegie Mellon University perform visual exploration of datasets
of solvent properties to design better batteries. A specific task may
involve finding solvents with desired behavior: e.g., those whose
solvation energy of Li+ vs. the boiling point is a roughly increas-
ing trend. To do this using current tools, these scientists manually
examine the plot of Li+ solvation energy vs. boiling point for each
of the thousands of solvents, to find those that match the desired
pattern of a roughly increasing trend.
Case Study 2: Advertising Data Analysis. Advertisers at ad an-
alytics firm Turn, Inc., often examine their portfolio of advertise-
ments to see if their campaigns are performing as expected. For
instance, an advertiser may be interested in seeing if there are any
keywords that are behaving unusually with respect to other key-
words in Asia—for example, maybe most keywords have a specific
trend for click-through rates (CTR) over time, while a small num-
ber of them have a different trend. To do this using the current
tools available at Turn, the advertiser needs to manually examine
the plots of CTR over time for each keyword (thousands of such
plots), and remember what are the typical trends.
Case Study 3: Genomic Data Analysis. Clinical researchers at the
NIH-funded genomics center at UIUC and Mayo Clinic are inter-
ested in studying data from clinical trials. One such task involves
finding pairs of genes that visually explain the differences in clinical
trial outcomes (positive vs. negative)—visualized via a scatterplot
with the x and y axes each referring to a gene, and each outcome
depicted as a point in the scatterplot—with the positive outcomes
depicted in one color, and the negative ones as another. Current
tools require the researchers to generate and manually evaluate tens
of thousands of scatter plots of pairs of genes for whether the out-
comes can be clearly distinguished in the scatter plot.
Case Study 4: Environmental Data Analysis. Climate scientists at
the National Center for Supercomputing Applications at Illinois are
interested in studying the nutrient and water property readings on
sensors within buoys at various locations in the Great Lakes. Often,
they find that a sensor is displaying unusual behavior for a specific
property, and want to figure out what is different about this sensor
relative to others, and if other properties for this sensor are show-
ing similar behavior. In either case, the scientists would need to
separately examine each property for each sensor (in total 100s of
thousands of visualizations) to identify explanations or similarities.
Case Study 5: Server Monitoring Analysis. The server monitor-
ing team at Facebook has noticed a spike in the per-query response
time for Image Search in Russia on August 15, after which the re-
sponse time flattened out. The team would like to identify if there
are other attributes that have a similar behavior with per-query re-
sponse time, which may indicate the reason for the spike and sub-
sequent flattening. To do this, the server monitoring team generates
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visualizations for different metrics as a function of the date, and as-
sess if any of them has similar behavior to the response time for
Image Search. Given that the number of metrics is likely in the
thousands, this takes a very long time.
Case Study 6: Mobile App Analysis. The complaints section of
the Google mobile platform team have noticed that a certain mo-
bile app has received many complaints. They would like to figure
out what is different about this app relative to others. To do this,
they need to plot various metrics for this app to figure out why it
is behaving anomalously. For instance, they may look at network
traffic generated by this app over time, or at the distribution of en-
ergy consumption across different users. In all of these cases, the
team would need to generate several visualizations manually and
browse through all of them in the hope of finding what could be the
issues with the app.
Thus, in these examples, the recurring theme is the manual exam-
ination of a large number of generated visualizations for a specific
visual pattern. Indeed, we have found that in these scenarios—data
exploration can be a tedious and time-consuming process with cur-
rent visualization tools.
Key Insight. The goal of this paper is to develop zenvisage, a
visual analytics system that can automate the search for desired
visual patterns. Our key insight in developing zenvisage is that
the data exploration needs in all of these scenarios can be captured
within a common set of operations on collections of visualizations.
These operations include: composing collections of visualizations,
filtering visualizations, based on some conditions, comparing visu-
alizations, and sorting them based on some condition. The condi-
tions include similarity or dissimilarity to a specific pattern, “typ-
ical” or anomalous behavior, or the ability to provide explanatory
or discriminatory power. These operations and conditions form the
kernel of a new data exploration language, ZQL ("zee-quel"), that
forms the foundation upon which zenvisage is built.
Key Challenges. We encountered many challenges in building the
zenvisage visual analytics platform, a substantial advance over the
manually-intensive visualization tools like Tableau and Spotfire;
these tools enable the examination of one visualization at a time,
without the ability to automatically identify relevant visualizations
from a collection of visualizations.

First, there were many challenges in developing ZQL, the under-
lying query language for zenvisage. Unlike relational query lan-
guages that operate directly on data, ZQL operates on collections
of visualizations, which are themselves aggregate queries on data.
Thus, in a sense ZQL is a query language that operates on other
queries a a first class citizen. This leads to a number of challenges
that are not addressed in a relational query language context. For
example, we had to develop a natural way to users to specify a
collection of visualizations to operate on, without having to explic-
itly list them; even though the criteria on which the visualizations
were compared varied widely, we had to develop a small number
of general mechanisms that capture all of these criteria; often, the
visualizations that we operated on had to be modified in various
ways—e.g., we might be interested in visualizing the sales of a
product whose profits have been dropping—composing these vi-
sualizations from existing ones is not straightforward; and lastly,
drilling down into specific visualizations from a collection also re-
quired special care. Our ZQL language is a synthesis of desiderata
after discussions with data scientists from a variety of domains, and
has been under development for the past two years. To further show
that ZQL is complete under a new visual exploration algebra that
we develop, involved additional challenges.

Second, in terms of front-end development, zenvisage, being an

interactive analytics tool, needs to support the ability for users to
interactively specify ZQL queries—specifically, interactive short-
cuts for commonly used ZQL queries, as well as the ability to pose
extended ZQL queries for more complex needs. Identifying com-
mon interaction “idioms” for these needs took many months.

Third, an important challenge in building zenvisage is the back-
end that supports the execution of ZQL. A single ZQL query can
lead to the generation of 10000s of visualizations—executing each
one independently as an aggregate query, would take several hours,
rendering the tool somewhat useless. (As it turns out, this time
would be what an analyst aiming to discover the same pattern would
have to spend with present visualization tools, so the naive automa-
tion may still help reducing the amount of manual effort.) zenvis-
age’s query optimizer operates as a wrapper over any traditional
relational database system. This query optimizer compiles ZQL
queries down to a directed acyclic graph of operations on collec-
tions of visualizations, followed with the optimizer using a combi-
nation of intelligent speculation and combination, to issue queries
to the underlying database. We also demonstrate that the underly-
ing problem is NP-HARD. Our query optimizer leads to substan-
tial improvements over the naive schemes adopted within relational
database systems for multi-query optimization.
Related Work. There are a number of tools one could use for inter-
active analysis; here, we briefly describe why those tools are inad-
equate for the important need of automating the search for desired
visual insights. We describe related work in detail in Section 8.

To start, visualization tools like Tableau and Spotfire only gen-
erate and provide one visualization at a time, while zenvisage ana-
lyzes collections of visualizations at a time, and identifies relevant
ones from that collection—making it substantially more powerful.

While we do use relational database systems as a computation
layer, it is cumbersome to near-impossible to express these user
needs in SQL. As an example, finding visualizations of solvents
for whom a given property follows a roughly increasing trend is
impossible to write within native SQL, and would require custom
UDFs—these UDFs would need to be hand-written for every ZQL
query. Similarly, finding visualizations of keywords where CTR
over time in Asia is behaving unusually with respect to other key-
words is challenging to write within SQL. For the small space of
queries where it is possible to write the queries within SQL these
queries require non-standard constructs, and are both complex and
cumbersome to write, even for expert SQL users, and are optimized
very poorly (see Section 8). It is also much more natural for end-
users to operate directly on visualizations than on data. Indeed,
users who have never programmed or written SQL before find it
easy to understand and write a subset of ZQL queries, as we will
show subsequently.

Statistical, data mining, and machine learning certainly provide
functionality beyond zenvisage in supporting prediction and statis-
tics; these functionalities are exposed as “one-click” algorithms
that can be applied on data. However, no functionality is provided
for searching for desired patterns; no querying functionality beyond
the one-click algorithms, and no optimization. To use such tools
for ZQL, many lines of code and hand-optimization is needed. As
such, these tools are beyond the reach of novice data scientists who
simply want to explore and visualize their datasets.
Outline. We first describe our query language for zenvisage, ZQL
(Section 2), and formalize the notion of a visual exploration alge-
bra, an analog of relational algebra, describing a core set of capa-
bilities for any language that supports visual data exploration and
demonstrate that ZQL is complete in that it subsumes these capa-
bilities (Section 3). We describe the graph-based query translator
and optimizer for ZQL (Section 4). We then describe our initial
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Figure 1: Sales over year visualization for the product chair.

prototype of zenvisage (Section 5). We describe our performance
experiments (Section 6), and present a user survey and study fo-
cused on evaluating the effectiveness and usability of zenvisage
(Section 7). In the appendix, we present additional details of our
query language, along with complete examples, and additional de-
tails on user study.

2. QUERY LANGUAGE
zenvisage’s query language, ZQL, provides users with a power-

ful mechanism to operate on collections of visualizations. In fact,
ZQL treats visualizations as a first-class citizen, enabling users to
operate at a high level on collections of visualizations much like
one would operate on relational data with SQL. For example, a
user may want to filter out all visualizations where the visualiza-
tion shows a roughly decreasing trend from a collection, or a user
may want to create a collection of visualizations which are most
similar to a visualization of interest. Regardless of the query, ZQL
provides an intuitive, yet flexible specification mechanism for users
to express the desired patterns of interest (in other words, their ex-
ploration needs) using a small number of ZQL lines. Overall, ZQL
provides users the ability to compose collections of visualizations,
filter them, and sort and compare them in various ways.

ZQL draws heavy inspiration from the Query by Example (QBE)
language [49] and uses a similar table-based specification interface.
Although ZQL components are not fundamentally tied to the tab-
ular interface, we found that our end-users feel more at home with
it; many of them are non-programmers who are used to spreadsheet
tools like Microsoft Excel. Users may either directly write ZQL, or
they may use the zenvisage front-end, which supports interactions
that are transformed internally into ZQL.

We now provide a formal introduction to ZQL in the rest of this
section. We introduce many sample queries to make it easy to
follow along, and we use a relatable fictitious product sales-based
dataset throughout this paper in our query examples—we will re-
veal attributes of this dataset as we go along.

2.1 Formalization
For describing ZQL, we assume that we are operating on a single

relation or a star schema where the attributes are unique (barring
key-foreign key joins), allowing ZQL to seamlessly support natural
joins. In general, ZQL could be applied to arbitrary collections of
relations by letting the user precede an attribute A with the relation
name R, e.g., R.A. For ease of exposition, we focus on the single
relation case.

2.1.1 Overview
The concept of visualizations. We start by defining the notion of
a visualization. We use a sample visualization in Figure 1 to guide
our discussion, Of course, different visual analysis tasks may re-
quire different types of visualizations (instead of bar charts, we may
want scatter plots or trend lines), but across all types a visualization
is defined by the following five main components: (i) the x-axis at-
tribute, (ii) the y-axis attribute, (iii) the subset of data used, (iv) the
type of visualization (e.g., bar chart, scatter plot), and (v) the bin-
ning and aggregation functions for the x- and y- axes.

Name X Y Z Viz
*f1 ‘year’ ‘sales’ ‘product’.‘chair’ bar.(y=agg(‘sum’))

Table 1: Query for the bar chart of sales over year for the product
chair.

Name X Y Z Viz
*f1 ‘year’ ‘sales’ ‘product’.* bar.(y=agg(‘sum’))

Table 2: Query for the bar chart of sales over year for each product.

Visualization collections in ZQL: ZQL has four columns to sup-
port the specification of visualizations that the five aforementioned
components map into: (i) X, (ii) Y, (iii) Z, and (iv) Viz.

Table 1 gives an example of a valid ZQL query that uses these
columns to specify a bar chart visualization of overall sales over
the years for the product chair (i.e., the visualization in Figure 1)—
ignore the Name column for now. The details for each of these
columns are presented subsequently. In short, the x axis (X) is the
attribute year, the y axis (Y) is the attribute sales, and the subset
of data (Z) is the product chair, while the type of visualization is a
bar chart (bar), and the binning and aggregation functions indicate
that the y axis is an aggregate (agg) — the sum of sales.

In addition to specifying a single visualization, users may often
want to retrieve multiple visualizations. ZQL supports this in two
ways. Users may use multiple rows, and specify one visualization
per row. The user may also specify a collection of visualizations in
a single row by iterating over a collection of values for one of the
X, Y, Z, and Viz columns. Table 2 gives an example of how one
may iterate over all products (using the notation * to indicate that
the attribute product can take on all values), returning a separate
sales bar chart for each product.
High-level structure of ZQL. Starting from these two examples,
we can now move onto the general structure of ZQL queries. Over-
all, each ZQL query consists of multiple rows, where each row
operates on collections of visualizations. Each row contains three
sets of columns, as depicted in Table 3: (i) the first column corre-
sponds to an identifier for a visualization collection, (ii) the second
set of columns defines a visualization collection, while (iii) the last
column corresponds to some operation on the visualization collec-
tion. All columns can be left empty if needed (in such cases, to save
space, for convenience, we do not display these columns in our pa-
per). For example, the last column may be empty if no operation is
to be performed, like it was in Table 1 and 2. We have already dis-
cussed (ii); now we will briefly discuss (i) and (iii), corresponding
to Name and Process respectively.
Identifiers and operations in ZQL. The Process column allows
the user to operate on the defined collections of visualizations, ap-
plying high-level filtering, sorting, and comparison. The Name col-
umn provides a way to label and combine specified collections of
visualizations, so users may refer to them in the Process column.
Thus, by repeatedly using the X, Y, Z, and Viz columns to com-
pose visualizations and the Process column to process those visu-
alizations, the user is able derive the exact set of visualizations she
is looking for. Note that the result of a ZQL query is the data used
to generate visualizations. The zenvisage front-end then uses this
data to render the visualizations for the user to peruse.

2.1.2 X, Y, and Z
The X and Y columns specify the attributes used for the x- and

y- axes. For example, Table 1 dictates that the returned visual-

Name X Y Z Viz Process︷ ︸︸ ︷
Identifier

︷ ︸︸ ︷
Visualization Collection

︷ ︸︸ ︷
Operation

Table 3: ZQL query structure.

3



Name X Y Z Viz
... ... {‘sales’, ‘profit’} ... ...

Table 4: Query for the sales and profit bar charts for the product
chair (missing values are the same as that in Table 1)

Name X Y Z Viz
... {‘year’, ‘month’} {‘sales’, ‘profit’} ... ...

Table 5: Query for the sales and profit bar charts over years and
months for chairs (missing values are the same as in Table 1).

Name X Y Z Z2 Viz
... ... ... ... ‘location’.‘US’ ...

Table 6: Query which returns the overall sales bar chart for the
chairs in US (all missing values are the same as that in Table 1).

ization should have ‘year’ for its x-axis and ‘sales’ for its y-axis.
As mentioned, the user may also specify a collection of values for
the X and Y columns if they wish to refer to a collection of visu-
alizations in one ZQL row. Table 4 refers the collection of both
sales-over-years and profit-over-years bar charts for the chair—the
missing values in this query (“...”) are the same as Table 1. As we
can see, a collection is constructed using {}. If the user wishes to
denote all possible values, the shorthand * symbol may be used,
as is shown by Table 2. In the case that multiple columns con-
tain collections, a Cartesian product is performed, and visualiza-
tions for every combination of values is returned. For example,
Table 5 would return the collection of visualizations with specifi-
cations: {(X: ‘year’, Y: ‘sales’), (X: ‘year’, Y: ‘profit’), (X:
‘month’, Y: ‘sales’), (X: ‘month’, Y: ‘profit’)}. Additionally,
ZQL allows composing multiple attributes in the X and Y columns
by supporting Polaris table algebra [4] over the operators: +, x, /
(Appendix A).

With the Z column, the user can select which subset of the data
they wish to construct their visualizations from. ZQL uses the
〈attribute〉.〈attribute-value〉 notation to denote the selection of data.
Consequently, the query in Table 1 declares that the user wishes to
retrieve the sales bar chart only for the chair product. Note that un-
like the X and Y columns, both the attribute and the attribute value
must be specified for the Z column; otherwise, a proper subset of
the data would not be identified. Collections are allowed for both
the attribute and the attribute value in the Z column. Table 2 shows
an example of using the * shorthand to specify a collection of bar
charts, one for each product. A Z column which has a collection
over attributes might look like: {‘location’, ‘product’}.* (i.e., a
visualization for every product and a visualization for every loca-
tion). In addition, the Z column allows users to specify predicate
constraints using syntax like ‘weight’.[? < 10]; this specifies all
items whose weight is less than 10 lbs. To evaluate, the ? is re-
placed with the attribute and the resulting expression is passed to
SQL’s WHERE clause. The predicate constraint syntax has an
analogous predicate collection syntax, which creates a collection
of the values which satisfy the condition. ‘weight’.[? < 10] spec-
ifies that the resulting visualizations must only contains items with
less than 10 lbs, ‘weight’.{? < 10} creates a collection of values,
one for each item which is less than 10 lbs.

ZQL supports multiple constraints on different attributes through
the use of multiple Z columns. In addition to the basic Z column,
the user may choose to add Z2, Z3, ... columns depending on how
many constraints she requires. Table 6 gives an example of a query
which looks at sales plots for chairs only in the US. Note that Z
columns are combined using conjunctive semantics.

2.1.3 Viz
The Viz column decides the visualization type, binning, and ag-

gregation functions for the row. Elements in this column have the

Name X Y Viz
*f1 ‘weight’ ‘sales’ bin2d.(x=nbin(20), y=nbin(20))

Table 7: Query which returns the heat map of sales vs. weights
across all transactions.

Name X Y Z
f1 ‘year’ ‘sales’ ‘product’.‘chair’
f2 ‘year’ ‘profit’ ‘location’.‘US’

*f3 <– f1 + f2 ‘weight’.[? < 10]

Table 8: Query which returns the sales for chairs or profits for US
visualizations for all items less than 10 lbs.

format: 〈type〉.〈bin+aggr〉. All examples so far have been bar
charts with no binning and SUM aggregation for the y-axis, but
other variants are supported. The visualization types are derived
from the Grammar of Graphics [48] specification language, so all
plots from the geometric transformation layer of ggplot [47] (the
tool that implements Grammar of Graphics) are supported. For in-
stance, scatter plots are requested with point and heat maps with
bin2d. As for binning, binning based on bin width (bin) and num-
ber of bins (nbin) are supported for numerical attributes—we may
want to use binning, for example, when we are plotting the total
number of products whose prices lie within 0-10, 10-20, and so on.

Finally, ZQL supports all the basic SQL aggregation functions
such as AVG, COUNT, and MAX. Table 7 is an example of a
query which uses a different visualization type, heat map, and cre-
ates 20 bins for both x- and y- axes.

Like the earlier columns, the Viz column also allows collections
of values. Similar to the Z column, collections may be specified
for both the visualization type or the binning and aggregation. If
the user wants to view the same data binned at different granular-
ities, she might specify a bar chart with several different bin widths:
bar.(x={bin(1), bin(5), bin(10)}, y=agg(‘sum’)). On the other
hand, if the user wishes to view the same data in different visual-
izations, she might write: {bar.(y=agg(‘sum’)), point.()}.

The Viz column allows users powerful control over the structure
of the rendered visualization. However, there has been work from
the visualization community which automatically tries to determine
the most appropriate visualization type, binning, and aggregation
for a dataset based on the x- and y- axis attributes [25, 33]. Thus,
we can frequently leave the Viz column blank and zenvisage will
use these rules of thumb to automatically decide the appropriate
setting for us. With this in mind, we omit the Viz column from
the remaining examples with the assumption that zenvisage will
determine the “best” visualization structure for us.

2.1.4 Name
Together, the values in the X, Y, Z, and Viz columns of each row

specify a collection of visualizations. The Name column allows us
to label these collections so that they can be referred to be in the
Process column. For example, f1 is the label or identifier given to
the collection of sales bar charts in Table 2. The * in front of f1
signifies that the the collection is an output collection; that is, ZQL
should return this collection of visualizations to the user.

However, not all rows need to have a * associated with their
Name identifier. A user may define intermediate collections of vi-
sualizations if she wishes to further process them in the Process
column before returning the final results. In the case of Table 8, f1
and f2 are examples of intermediate collections.

Also in Table 8, we have an example of how the Name column
allows us to perform high-level set-like operations to combine vi-
sualization collections directly. For example, f3 <– f1 + f2 as-
signs f3 to the collection which includes all visualizations in f1 and
f2 (similar to set union). This can be useful if the user wishes to
combine variations of values without considering the full Cartesian
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product. Our example in Table 8, the user is able to combine the
sales for chairs plots with the profits for the US plots without also
having to consider the sales for the US plots or the profits for chairs
plots; she would have had to do so if she had used the specification:
(Y: {‘sales’, ‘profit’}, Z: {‘product’.‘chair’, ‘location’.‘US’}).

An interesting aspect of Table 8 is that the X and Y columns of
the third row are devoid of values, and the Z column refer to the
seemingly unrelated weight attribute. The values in the X, Y, Z,
and Viz columns all help to specify a particular collection of visu-
alizations from a larger collection. When this collection is defined
via the Name column, we no longer need to fill in the values for X,
Y, Z, or Viz, except to select from the collection—here, ZQL only
selects the items which satisfy the constraint, weight < 10.

Other set-like operators include f1 - f2 for set minus and f1 ˆ f2
for intersection.

2.1.5 Process
The real power of ZQL as a query language comes not from

its ability to effortlessly specify collections of visualizations, but
rather from its ability to operate on these collections somewhat
declaratively. With ZQL’s processing capabilities, users can filter
visualizations based on trend, search for similar-looking visualiza-
tions, identify representative visualizations, and determine outlier
visualizations. Naturally, to operate on collections, ZQL must have
a way to iterate over them; however, since different visual analysis
tasks might require different forms of traversals over the collec-
tions, we expose the iteration interface to the user.
Iterations over collections. Since collections may be composed
of varying values from multiple columns, iterating over the col-
lections is not straight-forward. Consider Table 9—the goal is to
return profit by year visualizations for the top-10 products whose
profit by year visualizations look the most different from the sales
by year visualizations. This may indicate a product that deserves
special attention. While we will describe this query in detail be-
low, at a high level the first row assembles the visualizations for
profit over year for all products (f1), the second row assembles the
visualizations for sales over year for all products (f2), followed by
operating (via the Process column) on these two collections by find-
ing the top-10 products who sales over year is most different from
profit over year, while the third row displays the profit over year for
those top-10 products. A array-based representation of the visual-
ization collections f1 and f2, would look like the following:

f1=


X: ‘year’, Y: ‘profit’
Z: ‘product.chair’
Z: ‘product.table’
Z: ‘product.stapler’

...

f2=


X: ‘year’, Y: ‘sales’
Z: ‘product.chair’
Z: ‘product.table’
Z: ‘product.stapler’

...


We would like to iterate over the products—the Z dimension values—
of both f1 and f2 to make our comparisons. Furthermore, we must
iterate over the products in the same order for both f1 and f2 to en-
sure that a product’s profit visualization correctly matches with its
sales visualization. Using a single index for this would be compli-
cated and need to take into account the sizes of each of the columns.
While there may be other ways to architect this iteration for a sin-
gle attribute, it is virtually impossible to do when there are multiple
attributes that are varying. Instead, ZQL opts for a more powerful
dimension-based iteration, which assigns each column (or dimen-
sion) a separate iterator called an axis variable. This dimension-
based iteration is a powerful idea that extends to any number of
dimensions. As shown in Table 9, axis variables are defined and
assigned using the syntax: 〈variable〉<– 〈collection〉; axis vari-
able v1 is assigned to the Z dimension of f1 and iterates over all

product values. For cases in which multiple collections must tra-
verse over a dimension in the same order, an axis variable must be
shared across those collections for that dimension; in Table 9, f1
and f2 share v1 for their Z dimension, since we want to iterate over
the products in lockstep.
Operations on collections. With the axis variables defined, the
user can then formulate the high-level operations on collections of
visualizations as an optimization function which maximizes/mini-
mizes for their desired pattern. Given that argmaxx[k = 10] g(x)
returns the top-10 x values which maximizes the function g(x), and
D(x,y) returns the “distance” between x and y, now consider the
expression in the Process column for Table 9. Colloquially, the ex-
pression says to find the top-10 v1 values whose D( f 1, f 2) values
are the largest. The f 1 and f 2 in D( f 1, f 2) refer to the collections
of visualizations in the first and second row and are bound to the
current value of the iteration for v1. In other words, for each prod-
uct v1’ in v1, retrieve the visualizations f1[z: v1’] from collection
f1 and f2[z: v1’] from collection f2 and calculate the “distance”
between these visualizations; then, retrieve the 10 v1’ values for
which this distance is the largest—these are the products, and as-
sign v2 to this collection. Subsequently, we can access this set of
products in Z column of the third line of Table 9.
Formal structure. More generally, the basic structure of the Pro-
cess column is:

〈argopt〉〈axvar〉[〈limiter〉]〈expr〉 where

〈expr〉 →
(
max |min |∑ |∏

)
〈axvar〉 〈expr〉

→ 〈expr〉 (+|− |× |÷) 〈expr〉
→ T (〈nmvar〉)
→ D(〈nmvar〉,〈nmvar〉)

〈argopt〉 → (argmax|argmin|argany)
〈limiter〉 → (k = N | t > R | p = R)

where 〈axvar〉 refers to the axis variables, and 〈nmvar〉 refers
to collections of visualizations. 〈argopt〉 may be one of argmax,
argmin, or argany, which returns the values which have the largest,
smallest, and any expressions. The 〈limiter〉 limits the number of
results: k = N returns only the top-k values; t > R returns only
values who are larger than a threshold value t (may also be smaller,
greater than equal, etc.); p = R returns the top p-percentile values.
T and D are two simple functional primitives supported by ZQL
that can be applied to visualizations to find desired patterns:
• [T ( f ) → R]: T is a function which takes a visualization f

and returns a real number measuring some visual property of
the trend of f . One such property is “growth”, which returns
a positive number if the overall trend is “upwards” and a nega-
tive number otherwise; an example implementation might be to
measure the slope of a linear fit to the given input visualization
f . Other properties could measure the skewness, or the number
of peaks, or noisiness of visualizations.

• [D( f , f ′)→ R]: D is a function which takes two visualiza-
tions f and f ′ and measures the distance (or dissimilarity) be-
tween these visualizations. Examples of distance functions may
include pointwise distance functions like Euclidean distance,
Earth Mover’s Distance, or the Kullback-Leibler Divergence.
The distance D could also be measured using the difference in
the number of peaks, or slopes, or some other property.

ZQL supports many different implementations for these two func-
tional primitives, and the user is free to choose any one. If the user
does not select one, zenvisage will automatically detect the “best”
primitive based on the data characteristics. Furthermore, if ZQL
does not have an implementation of the T or D function that the
user is looking for, the user may write and use their own function.
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Name X Y Z Process
f1 ‘year’ ‘profit’ v1 <– ‘product’.*
f2 ‘year’ ‘sales’ v1 v2 <– argmaxv1[k = 10]D( f 1, f 2)

*f3 ‘year’ ‘profit’ v2

Table 9: Query which returns the top 10 profit visualizations for products which are most different from their sales visualizations.

Name X Y Z Process
f1 ‘year’ ‘sales’ v1 <– ‘product’.* v2 <– argmaxv1[t < 0]T ( f 1)

*f2 ‘year’ ‘sales’ v2

Table 10: Query which returns the sales visualizations for all products which have a negative trend.

Concrete examples. With just dimension-based iteration, the opti-
mization structure of the Process column, and the functional prim-
itives T and D, we found that we were able to support the majority
of the visual analysis tasks required by our users. Common pat-
terns include filtering based on overall trend (Table 10), searching
for the most similar visualization (Table 11), and determining out-
lier visualizations (Table 12). Table 10 describes a query where
in the first row, the variable v2 selects all products whose trend
is decreasing, and the second row visualizes these product’s sales
over year. Table 11 starts with the visualization sales over year
for chair in the first row, then in the second row computes the vi-
sualizations of sales over year for all products, and in the process
column computes the similarity with chair, assigning the top 10 to
v2, and the third row visualizes the sales over year for these prod-
ucts. Table 12 starts with the visualization collection of sales over
year for all products in the first row, followed by another collection
of the same in the second row, and in the process column computes
the sum of pairwise distances, assigning the 10 products whose vi-
sualizations are most distant to others to v3, after which they are
visualized. Table 13 features a realistic query inspired by one of
our case studies. The overall goal of the query is to find the prod-
ucts which have positive sales and profits trends in locations and
categories which have overall negative trends; the user may want to
look at this set of products to see what makes them so special. Rows
1 and 2 specify the sales and profit visualizations for all locations
and categories respectively, and the processes for these rows filter
down to the locations and categories which have negative trends.
Then rows 3 and 4 specify the sales and profit visualizations for
products in these locations and categories, and the processes filter
the visualizations down to the ones that have positive trends. Fi-
nally, row 5 takes the list of output products from the processes
in rows 3 and 4 and takes the intersection of the two returning the
sales and profits visualizations for these products.
Pluggable functions. While the general structure of the Process
column does cover the majority of the use cases requested by our
users, users may want to write their own functions to run in a ZQL
query. To support this, ZQL exposes a java-based API for users to
write their own functions. In fact, we use this interface to imple-
ment the k-means algorithm for ZQL. While the pluggable func-
tions do allow virtually any capabilities to be implemented, it is
preferred that users write their queries using the syntax of the Pro-
cess column; pluggable functions are considered black-boxes and
cannot be automatically optimized by the ZQL compiler.

2.2 Discussion of Capabilities and Limitations
Although ZQL can capture a wide range of visual exploration

queries, it is not limitless. Here, we give a brief description of
what ZQL can do. A more formal quantification can be found in
Section 3.

ZQL’s primary goal is to support queries over visualizations—
which are themselves aggregate group-by queries on data. Using

these queries, ZQL can compose a collection of visualizations, fil-
ter them in various ways, compare them against benchmarks or
against each other, and sort the results. The functions T and D,
while intuitive, support the ability to perform a range of computa-
tions on visualization collections—for example, any filter predicate
on a single visualization, checking for a specific visual property,
can be captured under T . With the pluggable functions, the ability
to perform sophisticated computation on visualization collections
is enhanced even further. Then, via the dimension-based iterators,
ZQL supports the ability to chain these queries with each other and
compose new visualization collections. These simple set of op-
erations offer unprecedented power in being able to sift through
visualizations to identify desired trends.

Since ZQL already operates one layer above the data—on the
visualizations—it does not support the creation of new derived data:
that is, ZQL does not support the generation of derived attributes or
values not already present in the data. The new data that is gener-
ated via ZQL is limited to those from binning and aggregating via
the Viz column. This limits ZQL’s ability to perform prediction—
since feature engineering is an essential part of prediction; it also
limits ZQL’s ability to compose visualizations on combinations of
attributes at a time, e.g., A1

A2 on the X axis. Among other drawbacks
of ZQL: ZQL does not support (i) recursion; (ii) any data mod-
ification; (iii) non-foreign-key joins nor arbitrary nesting; (iv) di-
mensionality reduction or other changes to the attributes; (v) other
forms of processing visualization collections not expressible via
T , D or the black box; (vi) multiple-dimensional visualizations;
(vii) intermediate variable definitions; (viii) merging of visualiza-
tions (e.g., by aggregating two visualizations); and (ix) statistical
tests.

3. EXPRESSIVENESS
In this section, we formally quantify the expressive power of

ZQL. To this end, we formulate an algebra, called the visual explo-
ration algebra. Like relational algebra, visual exploration algebra
contains a basic set of operators that we believe all visual explo-
ration languages should be able to express. At a high level, the
operators of our visual exploration algebra operate on sets of visu-
alizations and are not mired by the data representations of those vi-
sualizations, nor the details of how the visualizations are rendered.
Instead, the visual exploration algebra is primarily concerned with
the different ways in which visualizations can be selected, refined,
and compared with each other.

Given a function T that operates on a visualization at a time,
and a function D that operates on a pair of visualizations at a time,
both returning real-valued numbers, a visual exploration language
L is defined to be visual exploration complete V ECT,D(L) with re-
spect to T and D if it supports all the operators of the visual ex-
ploration algebra. These functions T and D (also defined previ-
ously) are “functional primitives” without which the resulting alge-
bra would have been unable to manipulate visualizations in the way
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Name X Y Z Process
f1 ‘year’ ‘sales’ ‘product’.‘chair’
f2 ‘year’ ‘sales’ v1 <– ‘product’.(* - ‘chair’) v2 <– argminv1[k = 10]D( f 1, f 2)

*f3 ‘year’ ‘sales’ v2

Table 11: Query which returns the sales visualizations for the 10 products whose sales visualizations are the most similar to the sales
visualization for the chair.

Name X Y Z Process
f1 ‘year’ ‘sales’ v1 <– ‘product’.*
f2 ‘year’ ‘sales’ v2 <– ‘product’.* v3 <– argmaxv1[k = 10]∑v2 D( f 1, f 2)

*f3 ‘year’ ‘sales’ v3

Table 12: Query which returns the sales visualizations for the 10 products whose sales visualizations are the most different from the others.

we need for data exploration. Unlike relational algebra, which does
not have any “black-box” functions, visual exploration algebra re-
quires these functions for operating on visualizations effectively.
That said, these two functions are flexible and configurable and up
to the user to define (or left as system defaults). Next, we formally
define the visual exploration algebra operators and prove that ZQL
is visual exploration complete.

3.1 Ordered Bag Semantics
In visual exploration algebra, relations have bag semantics. How-

ever, since users want to see the most relevant visualizations first,
ordering is critical. So, we adapt the operators from relational al-
gebra to preserve ordering information.

Thus, we operate on ordered bags (i.e., a bag that has an inherent
order). We describe the details of how to operate on ordered bags
below. We use the variables R,S to denote ordered bags. We also
use the notation R = [t1, . . . , tn] to refer to an ordered bag, where ti
are the tuples.

The first operator that we define is an indexing operator, much
like indexing in arrays. The notation R[i] refers to the ith tuple
within R, and R[i : j] refers to the ordered bag corresponding to the
list of tuples from the ith to the jth tuple, both inclusive. In the
notation [i : j] if either one of i or j is omitted, then it is assumed to
be 1 for i, and n for j, where n is the total number of tuples.

Next, we define a union operator ∪: R∪S refers to the concatena-
tion of the two ordered bags R and S. If one of R or S is empty, then
the result of the union is simply the other relation. We define the
union operation first because it will come in handy for subsequent
operations.

We define the σ operator like in relational algebra, via a recursive
definition:

σθ (R) = σθ ([R[1]])∪σθ (R[2 :])

where σθ when applied to an ordered bag with a single tuple ([t])
behaves exactly like in the relational algebra case, returning the
same ordered bag ([t]) if the condition is satisfied, and the empty
ordered bag ([]) if the condition is not satisfied. The π operator for
projection is defined similarly to σ in the equation above, with the
π operator on an ordered bag with a single tuple simply removing
the irrelevant attributes from that tuple, like in relational algebra.

Then, we define the \ operator, for ordered bag difference. Here,
the set difference operator operates on every tuple in the first or-
dered bag and removes it if it finds it in the second ordered bag.
Thus:

R\S = ([R[1]]\S)∪ (R[2 :]\S)

where [t] \ S is defined like in relational algebra, returning [t] if [t]
is not in S, and [] otherwise. The intersection operator ∩ is defined
similarly to ∪ and \.

Now, we can define the duplicate elimination operator as fol-
lows:

δ (R) = [R[1]]∪ (R[2 :]\ [R[1]])

Thus, the duplication elimination operator preserves ordering, while
maintaining the first copy of each tuple at the first position that it
was found in the ordered bag.

Lastly, we have the cross product operator, as follows:

R×S = ([R[1]]×S)∪ (R[2 :]×S)

where further we have

[t]×S = ([t]× [S[1]])∪ ([t]×S[2 :])

where [t]× [u] creates an ordered bag with the result of the cross
product as defined in relational algebra.

Given these semantics for ordered bags, we can develop the vi-
sual exploration algebra.

3.2 Basic Notation
Assume we are given a k-ary relation R with attributes (A1,A2, . . . ,Ak).

Let X be the unary relation with attribute X whose values are the
names of the attributes in R that can appear on the x-axis. If the
x-axis attributes are not specified by the user for relation R, the
default behavior is to include all attributes in R: {A1, . . . ,Ak}. Let
Y be defined similarly with Y for attributes that can appear on the
y-axis. Given R, X , and Y , we define V , the visual universe, as
follows: V = ν(R) = X ×Y ×

(
×k

i=1πAi(R)∪{∗}
)

where π is
the projection operator from relational algebra and ∗ is a special
wildcard symbol, used to denote all values of an attribute. Table 14
shows an example of what a sample R and corresponding X , Y ,
and V would look like. At a high level, the visual universe spec-
ifies all subsets of data that may be of interest, along with the in-
tended attributes to be visualized. Unlike relational algebra, visual
exploration algebra mixes schema and data elements, but in a spe-
cial way in order to operate on a collection of visualizations.

Any subset relation V ⊆V is called a visual group, and any k+2-
tuple from V is called a visual source. The last k portions (or at-
tributes) of a tuple from V comprise the data source of the visual
source. Overall, a visual source represents a visualization that can
be rendered from a selected data source, and a set of visual sources
is a visual group. The X and Y attributes of the visual source de-
termine the x- and y- axes, and the selection on the data source is
determined by attributes A1, . . . ,Ak. If an attribute has the wildcard
symbol ∗ as its value, no subselection is performed on that attribute
for the data source. For example, the third row of Table 14d is a vi-
sual source that represents the visualization with year as the x-axis
and sales as the y-axis for chair products. Since the value of loca-
tion is ∗, all locations are considered valid or pertinent for the data
source. In relational algebra, the data source for the third row can
be written as σproduct=chair(R). The ∗ symbol therefore attempts
to emulate the lack of presence of a selection condition on that at-
tribute in the σ operator of the relational algebra. Readers familiar
with OLAP will notice the similarity between the use of the symbol
∗ here and the GROUPING SETS functionality in SQL.
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Name X Y Z Z2 Z3 Process
f1 ‘year’ ‘sales’ v1 <– ‘location’.* v2 <– arganyv1[t < 0]T ( f 1)
f2 ‘year’ ‘profit’ v3 <– ‘category’.* v4 <– arganyv3[t < 0]T ( f 2)
f3 ‘year’ ‘profit’ v5 <– ‘product’.* ‘location’.[? IN v2] ‘category’.[? IN v4] v6 <– arganyv5[t > 0]T ( f 3)
f4 ‘year’ ‘sales’ v5 ‘location’.[? IN v2] ‘category’.[? IN v4] v7 <– arganyv5[t > 0]T ( f 4)

*f5 ‘year’ {‘profit’, ‘sales’} v6 ˆ v7

Table 13: Query which returns the profit and sales visualizations for products which have positive trends in profit and sales in locations and
categories which have overall negative trends.

year month product location sales profit
2016 4 chair US 623,000 314,000
2016 3 chair US 789,000 410,000
2016 4 table US 258,000 169,000
2016 4 chair UK 130,000 63,000

...

(a) Example R

X
year

month

(b) X

Y
sales
profit

(c) Y

X Y year month product location sales profit
year sales ∗ ∗ ∗ ∗ ∗ ∗
year profit ∗ ∗ ∗ ∗ ∗ ∗
year sales ∗ ∗ chair ∗ ∗ ∗
year sales ∗ ∗ chair US ∗ ∗

...

(d) V for R

Table 14: An example relation R and its resultant X , Y , and V .

Note that infinitely many visualizations can be produced from a
single visual source, due to different granularities of binning, ag-
gregation functions, and types of visualizations that can be con-
structed, since a visualization generation engine can use a visual-
ization rendering grammar like ggplot [47] that provides that func-
tionality. Our focus in defining the visual exploration algebra is
to specify the inputs to a visualization and attributes of interest
as opposed to the aesthetic aspects and encodings. Thus, for our
discussion, we assume that each visual source maps to a singular
visualization. Even if the details of the encoding and aesthetics
are not provided, standard rules may be applied for this mapping
as alluded earlier [25, 43] in Section 2.1. Furthermore, a visual
source does not specify the data representation of the underlying
data source; therefore the expressive power of visual exploration
algebra is not tied to any specific backend data storage model. The
astute reader will have noticed that the format for a visual source
looks fairly similar to a collections of visualizations in ZQL; this
is no accident. In fact, we will use the visualization collections of
ZQL as a proxy to visual sources when proving that ZQL is visual
exploration complete.

3.3 Functional Primitives
Earlier, we mentioned that a visual exploration algebra is visual

exploration complete with respect to two functional primitives: T
and D. Here we define the formal types for these functional primi-
tives with respect to visual exploration algebra.

The function T : V → R returns a real number given a visual
source. This function can be used to assess whether a trend: de-
fined by the visualization corresponding to a specific visual source,
is “increasing”, or “decreasing”, or satisfies some other fixed prop-
erty. Many such T can be defined and used within the visual explo-
ration algebra.

The function D : V ×V → R returns a real number given a pair
of visual sources. This function can be used to compare pairs of
visualizations (corresponding to the visual sources) with respect to
each other. The most natural way to define D is via some notion of
distance, e.g., Earth Mover’s or Euclidian distance, but once again,
the definition can be provided by the user or assumed as a fixed
black box.

3.4 Visual Exploration Algebra Operators
Similar to how operators in ordered bag algebra operate on and

result in ordered bags, operators in visual exploration algebra oper-
ate on and result in visual groups. Many of the symbols for oper-
ators in visual exploration algebra are also derived from relational
algebra, with some differences. To differentiate, operators in vi-
sual exploration algebra are superscripted with a v (e.g., σ v, τv).

The unary operators for visual exploration algebra include (i) σ v

for selection, (ii) τv for sorting a visual group based on the trend-
estimating function T , (iii) µv for limiting the number of visual
sources in a visual group, and (iv) δ v for duplicate visual source
removal. . The binary operators include (i) ∪v for union, (ii) \v for
difference, (iii) β v for replacing the attribute values of the visual
sources in one visual group’s with another’s, (iv) φ v to reorder the
first visual group based on the visual sources’ distances to the visual
sources of another visual group based on metric D, and (v) ηv to
reorder the visual sources in a visual group based on their distance
to a reference visual source from a singleton visual group based on
D. These operators are described below, and listed in Table 15.

3.4.1 Unary Operators.
σ v

θ
(V ): σ v selects a visual group from V based on selection criteria

θ , like ordered bag algebra. However, σ v has a more restricted
θ ; while ∨ and ∧ may still be used, only the binary comparison
operators = and 6= are allowed. As an example,
σ v

θ
(V) where θ = (X=‘year’ ∧ Y=‘sales’ ∧ year=∗ ∧ month=∗ ∧

product 6= ∗ ∧ location=‘US’ ∧ sales=∗ ∧ profit=∗ ) from Table 16
on V from Table 14 would result in the visual group of time vs.
sales visualizations for different products in the US.

In this example, note that the product is specifically set to not
equal ∗ so that the resulting visual group will include all products.
On the other hand, the location is explicitly set to be equal to US.
The other attributes, e.g., sales, profit, year, month are set to equal
∗: this implies that the visual groups are not employing any ad-
ditional constraints on those attributes. (This may be useful, for
example when those attributes are not relevant for the current vi-
sualization or set of visualizations.) As mentioned before, visual
groups have the semantics of ordered bags. Thus, σ v operates on
one tuple at a time in the order they appear in V , and the result is in
the same order the tuples are operated on.
τv

F(T )(V ): τv returns the visual group sorted in an increasing order
based on applying F(T ) on each visual source in V , where F(T ) is
a procedure that uses function T . For example, τv

−T (V ) might re-
turn the visualizations in V sorted in decreasing order of estimated
slope. This operator is not present in the ordered bag semantics,
but may be relevant when we want to reorder the ordered bag us-
ing a different criterion. The function F may be any higher-order
function with no side effects. For a language to visual exploration
complete, the language must be able to support any arbitrary F .
µv

k (V ): µv returns the first k visual sources of V ordered in the
same way they were in V . µv is equivalent to the LIMIT statement
in SQL. µv is often used in conjunction with τv to retrieve the top-
k visualizations with greatest increasing trends (e.g. µv

k (τ
v
−T (V ))).
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Operator Name Derived from Bag Algebra Meaning Unary/Binary
σ v Selection Yes Subselects visual sources Unary
τv Sort No Sorts visual sources in increasing order Unary
µv Limit Yes Returns first k visual sources Unary
δ v Dedup Yes Removes duplicate visual sources Unary

∪v/\v /∩v Union/Diff/Int Yes Returns the union of/differences between/intersec-
tion of two visual groups

Binary

β v Swap No Returns a visual group in which values of an at-
tribute in one visual group is replaced with values
of the same attribute in another visual group

Binary

φ v Dist No Sorts a visual group based on pairwise distance to
another visual group

Binary

ηv Find No Sorts a visual group in increasing order based on
their distances to a single reference visual source

Binary

Table 15: Visual Exploration Algebra Operators

When instead of a number k, the subscript to µv is actually [a : b],
then the items of V that are between positions a and b in V are
returned. Thus µv offers identical functionality to the [a : b] in
ordered bag algebra, with the convenient functionality of getting
the top k results by just having one number as the subscript. Instead
of using µv, visual exploration algebra also supports the use of the
syntax V [i] to refer to the ith visual source in V , and V [a : b] to refer
to the ordered bag of visual sources from positions a to b.
δ v(V ) : δ v returns the visual sources in V with the duplicates re-
moved, in the order of their first appearance. Thus, δ v is defined
identically to ordered bag algebra.

3.4.2 Binary Operators.
V ∪v U | V \v U | V ∩v U: Returns the union / difference / intersec-
tion of V and U . These operations are just like the corresponding
operations in ordered bag algebra.
β v

A(V,U): β v returns a visual group in which values of attribute A
in V are replaced with the values of A in U . Formally, assuming
Ai is the ith attribute of V and V has n total attributes: β v

Ai
(V,U) =

πA1,...,Ai−1,Ai+1,...,An(V )× πAi(U). This can be useful for when the
user would like to change an axis: βX(V,σ v

X=year(V)) will change
the visual sources in V to have year as their x-axis. β v can also be
used to combine multiple dimensions as well. If we assume that
V has multiple Y values, we can do β v

X(V,σ
v
X6=∗(V)) to have the

visual sources in V vary over both X and Y. This operator allows us
to start with a set of visualizations and then “pivot” to focus on a
different attribute, e.g., start with sales over time visualizations and
pivot to look at profit. Thus, the operator allows us to transform the
space of visual sources.
φ v

F(D),A1,...,A j
(V,U): φ v sorts the visual sources in V in increasing

order based on their distances to the corresponding visual sources
in U . More specifically, φ v computes F(D)(σ v

A1=a1∧...∧A j=a j
(V ),

σ v
A1=a1∧...∧A j=a j

(U))∀a1, ...,a j ∈ πA1,...,A j (V ) and returns an increas-
ingly sorted V based on the results. If σ v

A1=a1∧...∧A j=a j
for either

V or U ever returns a non-singleton visual group for any tuple
(a1, ...,a j), the result of the operator is undefined.
ηv

F(D)
(V,U): ηv sorts the visual sources in V in increasing order

based on their distances to a single reference visual source in sin-
gleton visual group U . Thus, U = [t]. ηv computes F(D)(V [i],U [1])
∀i ∈ {1, . . . , |V |}, and returns a reordered V based on these values,
where F(D) is a procedure that uses D. If U has more than one
visual source, the operation is undefined. ηv is useful for queries in
which the user would like to find the top-k most similar visualiza-
tions to a reference: µv

k (η
v
D(V,U)), where V is the set of candidates

and U contains the reference. Once again, this operator is similar
to τv, except that it operates on the results of the comparison of

X Y year month product location sales profit
year sales ∗ ∗ chair US ∗ ∗
year sales ∗ ∗ table US ∗ ∗
year sales ∗ ∗ stapler US ∗ ∗
year sales ∗ ∗ printer US ∗ ∗

...

Table 16: Results of performing unary operators on V from Ta-
ble 14: σ v

θ
(V) where θ = (X=‘year’ ∧ Y=‘sales’ ∧ year=∗ ∧

month=∗ ∧ product 6= ∗ ∧location=‘US’ ∧ sales=∗ ∧ profit=∗ )
.

individual visual sources to a specific visual source.

3.5 Proof of Visual Exploration Completeness
We now attempt to quantify the expressiveness of ZQL within

the context of visual exploration algebra and the two functional
primtives T and D. More formally, we prove the following theo-
rem:

THEOREM 3.1. Given well-defined functional primitives T
and D, ZQL is visual exploration complete with respect to T
and D: V ECT,D(ZQL) is true.

Our proof for this theorem involves two major steps:

Step 1. We show that a visualization collection in ZQL has as much
expressive power as a visual group of visual exploration alge-
bra, and therefore a visualization collection in ZQL serves as
an appropriate proxy of a visual group in visual exploration
algebra.

Step 2. For each operator in visual exploration algebra, we show
that there exists a ZQL query which takes in visualization
collection semantically equivalent to the visual group operands
and produces visualization collection semantically equiva-
lent to the resultant visual group.

LEMMA 3.2. A visualization collection of ZQL has at least as
much expressive power as a visual group in visual exploration al-
gebra.

PROOF. A visual group V , with n visual sources, is a relation
with k+2 columns and n rows, where k is the number of attributes
in the original relation. We show that for any visual group V , we
can come up with a ZQL query q which can produce a visualization
collection that represents the same set of visualizations as V .

Name X Y Z1 ... Zk
f1 πX(V [1]) πY(V [1]) E1,1 ... E1,k

...
...

...
...

...
...

fn πX(V [n]) πY(V [n]) En,1 ... En,k
*fn+1 <– f1+...+fn

Table 17: ZQL query q which produces a visualization collection
equal in expressiveness to visual group V .
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Query q has the format given by Table 17, where V [i] denotes the
ith tuple of relation V and:

Ei, j =

{
“ ” if πA j (V [i]) = ∗
A j.πA j (V [i]) otherwise

Here, A j refers to the jth attribute of the original relation. The ith
visual source of V is represented with the fi from q. The X and Y
values come directly from the visual source using projection. For
the Zj column, if the A j attribute of visual source has any value
than other than ∗, we must filter the data based on that value, so
Ei, j = A j.πA jV [i]. However, if the A j attribute is equal to ∗, then
the corresponding element in fi is left blank, signaling no filtering
based on that attribute.

After, we have defined a visualization collection fi for each ith
visual source in V , we take the sum (or concatenation) across all
these visualization collections as defined in Appendix A.3, and the
resulting fn+1 becomes equal to the visual group V .

LEMMA 3.3. σ v
θ
(V ) is expressible in ZQL for all valid con-

straints θ and visual groups V .

PROOF. We prove this by induction.
The full context-free grammar (CFG) for θ in σ v

θ
can be given

by:

θ → E | E ∧E | E ∨E | ε (1)
E→C | (E) | E ∧C | E ∨C (2)
C→ T1 = B1 | T1 6= B1 | T2 = B2 | T2 6= B2 (3)
T1→ X | Y (4)
B1→ A1 | ... | Ak (5)
T2→ A1 | ... | Ak (6)
B2→ string | number | ∗ (7)

where ε represents an empty string (no selection), and X , Y , and
A1, ..., Ak refer to the attributes of V .

To begin the proof by induction, we first show that ZQL is capa-
ble of expressing the base expressions σ v

C(V ): σ v
T1=B1

(V ), σ v
T1 6=B1

(V ),
σ v

T2=B2
(V ), and σ v

T2 6=B2
(V ). The high level idea for each of these

proofs is to be come up with a filtering visual group U which we
take the intersection with to arrive at our desired result: ∃U,σ v

C(V )=
V ∩v U .

In the first two expressions, T1 and B1 refer to filters on the X
and Y attributes of V ; we have the option of either selecting a spe-
cific attribute (T1 = B1) or excluding a specific attribute (T1 6= B1).
Tables 18 and 19 show ZQL queries which express σ v

T1=B1
(V ) for

T1→ X and T1→ Y respectively. The ZQL queries do the approx-
imate equivalent of σ v

T1=B1
(V ) =V ∩v σ v

T1=B1
(V).

Name X Y Z1 ... Zk
f1 - - - ... -

f2 <– f1 y1 <– _ v1 <– A1._ ... vk <– Ak._
f3 B1 y1 v1 ... vk

*f4 <– f1ˆf3
Table 18: ZQL query which expresses σ v

X=B1
(V ).

Name X Y Z1 ... Zk
f1 - - - ... -

f2 <– f1 x1 <– _ v1 <– A1._ ... vk <– Ak._
f3 x1 B1 v1 ... vk

*f4 <– f1ˆf3
Table 19: ZQL query which expresses σ v

Y=B1
(V ).

We have shown with Lemma 3.2 that a visualization collection
is capable of expressing a visual group, so we assume that f1, the
visualization collection which represents the operand V , is given

to us for both of these tables. Since we do not know how f1 was
derived, we use - for its axis variable columns. The second rows
of these tables derive f2 from f1 and bind axis variables to the val-
ues of the non-filtered attributes. Here, although the set of visu-
alizations present in f2 is exactly the same as f1, we now have a
convenient way to iterate over the non-filtered attributes of f1 (for
more information on derived visualization collections, please refer
to Appendix A.3). The third row combines the specified attribute
B1 with the non-filtered attributes of f2 to form the filtering visu-
alization collection f3, which expresses the filtering visual group
U from above. We then take the intersection between f1 and the
filtering visualization collection f3 to arrive at our desired visual-
ization collection f4, which represents the resultant visual group
σ v

T1=B1
(V ). Although, we earlier said that we would come up with

f3= σ v
T1=B1

(V), in truth, we come up with f3= B1×πY,A1,...,Ak (V )

for T1 → X and f3 = πX ,A1,...,Ak (V )×B1 for T1 → Y because they
are easier to express in ZQL; regardless we still end up with the
correct resulting set of visualizations.

Tables 20 and 21 show ZQL queries which express σ v
T1 6=B1

(V )

for T1→ X and T1→ Y respectively. Similar to the queries above,
these queries perform the approximate equivalent of σ v

T1 6=B1
(V ) =

V ∩v σ v
T1 6=B1

(V). We once again assume f1 is a given visualization
collection which represents the operand V , and we come up with
a filtering visualization collection f3 which mimics the effects of
(though is not completely equivalent to) σ v

T1 6=B1
(V). We then take

the intersection between f1 and f3 to arrive at f4 which represents
the resulting σ v

T1 6=B1
(V ).

The expressions σ v
T2=B2

and σ v
T2 6=B2

refer to filters on the A1, ...,Ak

attributes of V . Specifically, T2 is some attribute A j ∈ {A1, ...,Ak}
and B2 is the attribute value which is selected or excluded. Here,
we have an additional complication to the proof since any attribute
A j can also filter for or exclude ∗. First, we show ZQL is capable
of expressing σ v

T2=B′2
and σ v

T2 6=B′2
for which B′2 6= ∗; that is B′2 is

any attribute value which is not ∗. Tables 22 and 23 show the ZQL
queries which express σ v

T2=B′2
(V ) and σ v

T2 6=B′2
(V ) respectively. Note

the similarity between these queries and the queries for σ v
T1=B1

(V )

and σ v
T1 6=B1

(V ).
For σ v

T2=∗(V ) and σ v
T2 6=∗(V ), Tables 24 and 25 show the corre-

sponding queries. In Table 24, we explicitly avoid setting a value
for Zj for f3 to emulate A j = ∗ for the filtering visualization col-
lection. In Table 25, f3’s Zj takes on all possible values from A j.*,
but that means that a value is set for Zj (i.e., T2 6= ∗).

Now that we have shown how to express the base operations,
we next assume ZQL is capable of expressing any arbitrary com-
plex filtering operations σ v

E ′ where E ′ comes from Line 2 of the
CFG. Specifically, we assume that given a visualization collection
f1 which expresses V , there exists a filtering visualization collec-
tion f2 for which σ v

E ′(V ) = f1ˆf2. Given this assumption, we
now must take the inductive step, apply Line 2, and prove that
σ v

E→(E ′)(V ), σ v
E→E ′∧C(V ), and σ v

E→E ′∨C(V ) are all expressible in
ZQL for any base constraint C.
σ v

E→(E ′)(V ): This case is trivial. Given f1 which represents V and
f2 which is the filtering visualization collection for E ′, we simply
the intersect the two to get f3 <– f1ˆf2 which represents σ v

E→(E ′).

σ v
E→E ′∧C: Once again assume we are given f1 which represents V

and f2 which is the filtering visualization collection of E ′. Based
on the base expression proofs above, we know that given any base
constraint C, we can find a filtering visualization collection for it;
call this filtering visualization collection f3. We can then see that
f2ˆf3 is the filtering visualization collection of E→ E ′∧C, and f4
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Name X Y Z1 ... Zk
f1 - - - ... -

f2 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... vk <– Ak._
f3 x2 <– x1 - {B1} y1 v1 ... vk

*f4 <– f1ˆf3
Table 20: ZQL query which expresses σ v

X 6=B1
(V ).

Name X Y Z1 ... Zk
f1 - - - ... -

f2 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... vk <– Ak._
f3 x1 y2 <– y1 - {B1} v1 ... vk

*f4 <– f1ˆf3
Table 21: ZQL query which expresses σ v

Y 6=B1
(V ).

Name X Y Z1 ... Zj ... Zk
f1 - - - ... - ... -

f2 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... ... vk <– Ak._
f3 x1 y1 v1 ... B′2 ... vk

*f4 <– f1ˆf3
Table 22: ZQL query which expresses σ v

A j=B′2
(V ) when B′2 6= ∗.

Name X Y Z1 ... Zj ... Zk
f1 - - - ... - ... -

f2 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... vj <– A j ._ ... vk <– Ak._
f3 x1 y1 v1 ... uj <– vj - {B′2} ... vk

*f4 <– f1ˆf3
Table 23: ZQL query which expresses σ v

A j 6=B′2
(V ) when B′2 6= ∗.

Name X Y Z1 ... Zj ... Zk
f1 - - - ... - ... -

f2 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... ... vk <– Ak._
f3 x1 y1 v1 ... ... vk

*f4 <– f1ˆf3
Table 24: ZQL query which expresses σ v

A j=∗(V ).
Name X Y Z1 ... Zj ... Zk

f1 - - - ... - ... -
f2 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... ... vk <– Ak._

f3 x1 y1 v1 ... vj <– A j .* ... vk
*f4 <– f1ˆf3

Table 25: ZQL query which expresses σ v
A j 6=∗(V ).

<– f1ˆ(f2ˆf3) represents σ v
E→E∧C(V ).

σ v
E→E ′∨C: Once again assume we are given f1 which represents V ,

f2 which is the filtering visualization collection of E ′, and we can
find a filtering visualization collection f3 for C. We can then see
that f2+f3 is the filtering visualization collection of E → E ′ ∨C,
and f4 <– f1ˆ(f2+f3) represents σ v

E→E∨C(V ).
With this inductive step, we have shown that for all complex

constraints E of the form given by Line 2 of the CFG, we can find
a ZQL query which expresses σ v

E(V ). Given this, we can finally
show that ZQL is capable of expressing σ v

θ
(V ) for all θ : σ v

θ→E(V ),
σ v

θ→E∧E ′)(V ), σ v
θ→E∨E ′(V ), and σ v

θ→ε
(V ).

σ v
θ→E(V ): This case is once again trivial. Assume, we are given

f1 which represents V , and f2, which is the filtering visualization
collection of E, f3 <– f1ˆf2 represents σ v

θ→E(V ).
σ v

θ→E∧E ′(V ): Assume, we are given f1 which represents V , f2,
which is the filtering visualization collection of E, and f3, which
is the filtering visualization collection of E ′. f2ˆf3 is the filtering
visualization collection of θ → E ∧E ′, and f4 <– f1ˆ(f2ˆf3) rep-
resents σ v

θ→E∧E ′(V ).
σ v

θ→E∨E ′(V ): Assume, we are given f1 which represents V , f2
which is the filtering visualization collection of E, and f3 which
is the filtering visualization collection of E ′. f2+f3 is the filter-
ing visualization collection of θ → E ∨E ′, and f4 <– f1ˆ(f2+f3)
represents σ v

θ→E∨E ′(V ).
σ v

θ→ε
(V ): This is the case in which no filtering is done. Therefore,

given f1 which represents V , we can simply return f1.

LEMMA 3.4. τv
F(T )(V ) is expressible in ZQL for all valid func-

tionals F of T and visual groups V .

PROOF. Assume f1 is the visualization collection which repre-
sents V . Query q given by Table 26 produces visualization collec-
tion f3 which expresses τv

F(T )(V ).

LEMMA 3.5. µv
[a:b](V ) is expressible in ZQL for all valid inter-

vals a : b and visual groups V .

PROOF. Assume f1 is the visualization collection which repre-
sents V . Query q given by Table 27 produces visualization collec-
tion f2 which expresses µv

[a:b](V ).

LEMMA 3.6. δ v(V ) is expressible in ZQL for all valid visual
groups V .

PROOF. Assume f1 is the visualization collection which repre-
sents V . Query q given by Table 28 produces visualization collec-
tion f2 which expresses δ v(V ).

LEMMA 3.7. V ∪v U is expressible in ZQL for all valid visual
groups V and U.

PROOF. Assume f1 is the visualization collection which repre-
sents V and f2 represents U . Query q given by Table 29 produces
visualization collection f3 which expresses V ∪v U .

LEMMA 3.8. V \v U is expressible in ZQL for all valid visual
groups V and U.

PROOF. Assume f1 is the visualization collection which repre-
sents V and f2 represents U . Query q given by Table 30 produces
visualization collection f3 which expresses V \v U . The proof for
∩v can be shown similarly.

LEMMA 3.9. β v
A(V,U) is expressible in ZQL for all valid at-

tributes A in V and visual groups V and U.
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Name X Y Z1 ... Zk Process
f1 - - - ... -

f2 <– f1 x1 <– _ y1 <– _ v1 <– A1._ .. vk <– Ak._ x2, y2, u1, ..., uk <– argminx1,y1,v1,...,vk [k = ∞]F(T )( f 2)
*f3 x2 y2 u1 ... uk

Table 26: ZQL query q which expresses τv
F(T )(V ).

Name X Y Z1 ... Zk Process
f1 - - - ... -

*f2 <– f1[a:b]
Table 27: ZQL query q which expresses µv

[a:b](V ).

Name X Y Z1 ... Zk Process
f1 - - - ... -

*f2 <– f1
Table 28: ZQL query q which expresses δ v(V ).

Name X Y Z1 ... Zk Process
f1 - - - ... -
f2 - - - ... -

*f3 <– f1+f2 ...
Table 29: ZQL query q which expresses V ∪v U.

Name X Y Z1 ... Zk Process
f1 - - - ... -
f2 - - - ... -

*f3 <– f1-f2 ...
Table 30: ZQL query q which expresses V \v U.

Name X Y Z1 ... Zk
f1 - - - ... -
f2 - - - ... -

f3 <– f1 y1 <– _ v1 <– A1._ ... vk <– Ak._
f4 <– f2 x1 <– _

*f5 x12 y11 v11 ... vk1

Table 31: ZQL query q which expresses β v
A(V,U) where A = X.

Name X Y Z1 ... Zk
f1 - - - ... -
f2 - - - ... -

f3 <– f1 x1 <– _ v1 <– A1._ ... vk <– Ak._
f4 <– f2 y1 <– _

*f5 x11 y12 v11 ... vk1

Table 32: ZQL query q which expresses β v
A(V,U) where A = Y .

Name X Y Z1 ... Zj-1 Zj Zj+1 ... Zk
f1 - - - ... - - - ... -
f2 - - - ... - - - ... -

f3 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... vj-1 <– A j−1._ vj+1 <– A j+1._ ... vk <– Ak._
f4 <– f2 uj <– A j ._

*f5 x11 y11 v11 ... vj-11 uj2 vj+11 ... vk1

Table 33: ZQL query q which expresses β v
A(V,U) where A = A j and A j is an attribute from R

12



PROOF. Assume f1 is the visualization collection which repre-
sents V and f2 represents U . There are three cases we must handle
depending on the value of A due to the structure of columns in ZQL:
(i) A = X (ii) A = Y (iii) A = A j where A j is an attribute from the
original relation R . For each of the three cases, we produce a sep-
arate query which expresses β v. For A = X , the query given by
Table 31 produces f5 which is equivalent to β v

X (V,U) We use the
superscripts in the last row so that cross product conforms to the
ordering defined in Section 3.4. For more information about the
superscripts, please refer to Appendix A.3. For A = Y , the query
given by Table 32 produces f5 which is equivalent to β v

Y (V,U), and
for A=A j, the query given by Table 33 produces f5 which is equiv-
alent to β v

A j
(V,U).

LEMMA 3.10. φ v
F(D),A1,...,A j

(V,U) is expressible in ZQL for all
valid attributes A1, ...,A j and visual groups V and U.

PROOF. Assume f1 is the visualization collection which repre-
sents V , and f2 represents U . Without loss of generality, assume the
attributes we want to match on (A1, ...,A j) are the first j attributes
of R. Query q given by Table 34 produces visualization collec-
tion f5 which expresses φ v

F(D),A1,...,A j
(V,U). In the table, we first

retrieve the values for (A1, ...,A j) using f3 and reorder f2 based
on these values to get f4. We then compare the visualizations in
f3 and f4 with respect to (A1, ...,A j) using the distance function
F(D) and retrieve the increasingly sorted (A1, ...,A j) values from
the argmin. We are guaranteed that visualizations in f3 and f4
match up perfectly with respect to (A1, ...,A j) since the definition
in Section 3.4 allows exactly one visual source to result from any
σ v

A1=a1∧...∧A j=a j
. Finally, we reorder f1 according to these values

to retrieve f5. For more information on the .order operation, please
refer to Appendix A.3.

LEMMA 3.11. ηv
F(D)

(V,U) is expressible in ZQL for all valid
functionals F of D and visual groups V and singleton visual groups
U.

PROOF. Assume f1 is the visualization collection which repre-
sents V and f2 represents U . Query q given by Table 35 produces
visualization collection f4 which expresses ηv

F(D)
(V,U).

Although we have come up with a formalized algebra to mea-
sure the expressiveness of ZQL, ZQL is actually more expressive
than visual exploration algebra. For example, ZQL allows the user
to nest multiple levels of iteration in the Process column as in Ta-
ble 12. Nevertheless, visual exploration algebra serves as a use-
ful minimum metric for determining the expressiveness of visual
exploration languages. Other visual analytics tools like Tableau
are capable of expressing the selection operator σ v in visual ex-
ploration algebra, but they are incapable of expressing the other
operators which compare and filter visualizations based on func-
tional primitives T and D. General purpose programming lan-
guages with analytics libraries such as Python and Scikit-learn [37]
are visual exploration complete since they are Turing-complete, but
ZQL’s declarative syntax strikes a novel balance between simplic-
ity and expressiveness which allows even non-programmers to be-
come data analysts as we see in Section 7.

4. QUERY EXECUTION
In zenvisage, ZQL queries are automatically parsed and exe-

cuted by the back-end. The ZQL compiler translates ZQL queries
into a combination of SQL queries to fetch the visualization collec-
tions and processing tasks to operate on them. We present a basic
graph-based translation for ZQL and then provide several optimiza-
tions to the graph which reduce the overall runtime considerably.

f1

f2

p1

p2

f3

f4

p3

p4

f5

Figure 2: The query plan for the query presented in Table 13.
4.1 Basic Translation

Every valid ZQL query can be transformed into a query plan in
the form of a directed acyclic graph (DAG). The DAG contains c-
nodes (or collection nodes) to represent the collections of visualiza-
tions in the ZQL query and p-nodes (or process nodes) to represent
the optimizations (or processes) in the Process column. Directed
edges are drawn between nodes that have a dependency relation-
ship. Using this query plan, the ZQL engine can determine at each
step which visualization collection to fetch from the database or
which process to execute. The full steps to build a query plan for
any ZQL query is as follows: (i) Create a c-node or collection
node for every collection of visualizations (including singleton col-
lections). (ii) Create a p-node or processor node for every opti-
mization (or process) in the Process column. (iii) For each c-node,
if any of its axis variables are derived as a result of a process, con-
nect a directed edge from the corresponding p-node. (iv) For each
p-node, connect a directed edge from the c-node of each collec-
tion which appears in the process. Following these steps, we can
translate our realistic query example in Table 13 to its query plan
presented in Figure 2. Here, the c-nodes are annotated with f#,
and the p-nodes are annotated with p# (the ith p-node refers to the
process in the ith row of the table). Further, f1 is a root node with
no dependencies since it does not depend on any process, whereas
f5 depends on the results of both p3 and p4 and have edges coming
from both of them. Once the query plan has been constructed, the
ZQL engine can execute it using the simple algorithm presented in
in Algorithm 1.

ALGORITHM 1. Algorithm to execute ZQL query plan:
1. Search for a node with either no parents or one whose parents

have all been marked as done.
2. Run the corresponding task for that node and mark the node as

done.
3. Repeat steps 1 and 2 until all nodes have been marked as done.

For c-nodes, the corresponding task is to retrieve the data for
visualization collection, while for p-nodes, the corresponding task
is to execute the process.
c-node translation: At a high level, for c-nodes, the appropriate
SQL group-by queries are issued to the database to compose the
data for multiple visualizations at once. Specifically, for the sim-
plest setting where there are no collections specified for X or Y, a
SQL query in the form of:

SELECT X, A(Y), Z, Z2, ... WHERE C(X, Y, Z, Z2, ...)
GROUP BY X, Z, Z2, ... ORDER BY X, Z, Z2, ...

is issued to the database, where X is the X column attribute, Y is the
Y column attribute, A(Y) is the aggregation function on Y (spec-
ified in the Viz column), Z, Z2, ... are the attributes/dimensions
we are iterating over in the Z columns, while C(X, Y, Z, Z2, ...)
refers to any additional constraints specified in the Z columns. The
ORDER BY is inserted to ensure that all rows corresponding to
a visualization are grouped together, in order. As an example, the
SQL query for the c-node for f1 in Table 12 would have the form:

SELECT year, SUM(sales), product
GROUP BY year, product ORDER BY year, product

If a collection is specified for the y-axis, each attribute in the collec-
tion is appended to the SELECT clause. If a collection is specified
for the x-axis, a separate query must be issued for every X attribute
in the collection. The results of the SQL query are then packed into
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Name X Y Z1 ... Zj Process
f1 - - - ... -
f2 - - - ... -

f3 <– f1 v1 <– A1._ ... vj <– A j ._
f4 <– f2.order v1 –> ... vj –> u1, ..., uj <– argminv1,...,v j [k = ∞]F(D)( f 3, f 4)

*f5 <– f1.order u1 –> ... uj –>
Table 34: ZQL query q which expresses φ v

F(D),A1,...,A j
(V,U).

Name X Y Z1 ... Zk Process
f1 - - - ... -
f2 - - - ... -

f3 <– f1 x1 <– _ y1 <– _ v1 <– A1._ ... vk <– Ak._ x2, y2, u1, ..., uk <– argminx1,y1,v1,...,vk [k = ∞]F(D)( f 3, f 2)
*f4 x2 y2 u1 ... uk

Table 35: ZQL query q which expresses ηv
F(D)

(V,U).

a m-dimensional array (each dimension in the array corresponding
to a dimension in the collection) and labeled with its f# tag.
p-node translation: At a high level, for p-nodes, depending on the
structure of the expression within the process, the appropriate pseu-
docode is generated to operate on the visualizations. To illustrate,
say our process is trying to find the top-10 values for which a trend
is maximized/minimized with respect to various dimensions (using
T ), and the process has the form:

〈argopt〉v0[k = k′]
[
〈op1〉v1

[
〈op2〉v2 · · ·

[
〈opm〉vmT ( f 1)

]]]
(8)

where 〈argopt〉 is one of argmax or argmin, and 〈op〉 refers to
one of (max |min |∑ |∏). Given this, the pseudocode which op-
timizes this process can automatically be generated based on the
actual values of 〈argopt〉, 〈op〉, and the number of operations. In
short, for each 〈op〉 or dimension traversed over, the ZQL engine
generates a new nested for loop. Within each for loop, we iter-
ate over all values of that dimension, evaluate the inner expres-
sion, and then eventually apply the overall operation (e.g., max,
∑). For Equation 8, the generated pseudocode would look like the

one given by Listing 1. Here, f refers to the visualization collection
being operated on by the p-node, which the parent c-node should
have already retrieved.
f = make_ndarray(SQL(...))
tmp0 = make_array(size=len(v0))
for i0 in [1 .. len(v0)]:
tmp1 = make_array(size=len(v1))
for i1 in [1 .. len(v1)]:
tmp2 = make_array(size=len(v2))
for i2 in [1 .. len(v2)]:
...
tmpm = make_array(size=len(vn))
for im in [1 .. len(vn)]:
tmpm[im] = T(f[0, i1, i2, ..., im])

tmpm-1[im-1] = opm(tmpm)
...

tmp1[i1] = op1(tmp2)
tmp0[i0] = op0(tmp1)

return argopt(tmp0)[:k’]

Listing 1: Pseudocode for a process in the form of Equation 8.
Although this is the translation for one specific type of process,

it is easy to see how the code generation would generalize to other
patterns.

4.2 Optimizations
We now present several optimizations to the previously intro-

duced basic translator. In preliminary experiments, we found that
the SQL queries for the c-nodes took the majority of the runtime for
ZQL queries, so we concentrate our efforts on reducing the cost of
these c-nodes. However, we do present one p-node-based optimiza-
tion for process-intensive ZQL queries. We start with the simplest
optimization schemes, and add more sophisticated variations later.

4.2.1 Parallelization
One natural way to optimize the graph-based query plan is to

take advantage of the multi-query optimization (MQO) [41] present

in databases and issue in parallel the SQL queries for independent
c-nodes—the c-nodes for which there is no dependency between
them. With MQO, the database can receive multiple SQL queries
at the same time and share the scans for those queries, thereby re-
ducing the number of times the data needs to be read from disk.

To integrate this optimization, we make two simple modifica-
tions to Algorithm 1. In the first step, instead of searching for a
single node whose parents have all been marked done, search for
all nodes whose parents have been marked as done. Then in step 2,
issue the SQL queries for all c-nodes which were found in step 1 in
parallel at the same time. For example, the SQL queries for f1 and
f2 could be issued at the same time in Figure 2, and once p1 and p2
are executed, SQL queries for f3 and f4 can be issued in parallel.

4.2.2 Speculation
While parallelization gives the ZQL engine a substantial increase

in performance, we found that many realistic ZQL queries intrin-
sically have a high level of interdependence between the nodes in
their query plans. To further optimize the performance, we use
speculation, i.e., the ZQL engine pre-emptively issues SQL queries
to retrieve the superset of visualizations for each c-node, consider-
ing all possible outcomes for the axis variables. Specifically, by
tracing the provenance of each axis variable back to the root, we
can determine the superset of all values for each axis variable;
then, by considering the cartesian products of these sets, we can
determine a superset of the relevant visualization collection for a
c-node. After the SQL queries have returned, the ZQL engine pro-
ceeds through the graph as before, and once all parent p-nodes for
a c-node have been evaluated, the ZQL engine isolates the correct
subset of data for that c-node from the pre-fetched data.

For example, in the query in Table 13, f3 depends on the results
of p1 and p2 since it has constraints based on v2 and v4; specif-
ically v2 and v4 should be locations and categories for which f1
and f2 have a negative trend. However, we note that v2 and v4 are
derived as a result of v1 and v3, specified to take on all locations
and categories in rows 1 and 2. So, a superset of f3, the set of profit
over year visualizations for various products for all locations and
categories (as opposed to just those that satisfy p1 and p2), could
be retrieved pre-emptively. Later, when the ZQL engine executes
p1 and p2, this superset can be filtered down correctly.

One downside of speculation is that a lot more data must be re-
trieved from the database, but we found that blocking on the re-
trieval of data was more expensive in runtime than retrieving ex-
tra data. Thus, speculation ends up being a powerful optimization
which compounds the positive effects of parallelization.

4.2.3 Query Combination
From extensive modeling of relational databases, we found that

the overall runtime of concurrently running issuing SQL queries is
heavily dependent on the number of queries being run in parallel.
Each additional query constituted a Tq increase in the overall run-
time (e.g., for our settings of PostgreSQL, we found Tq = ~900ms).
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To reduce the total number of running queries, we use query com-
bination; that is, given two SQL queries Q1 and Q2, we combine
these two queries into a new Q3 which returns the data for both Q1
and Q2. In general, if we have Q1 (and Q2) in the form of:

SELECT X1, A(Y1), Z1 WHERE C1(X1, Y1, Z1)
GROUP BY X, Z1 ORDER BY X, Z1

we can produce a combined Q3 which has the form:
SELECT X1, A(Y1), Z1, C1, X2, A(Y2), Z2, C2

WHERE C1 or C2
GROUP BY X1, Z1, C1, X2, Z2, C2
ORDER BY X1, Z1, C1, X2, Z2, C2

where C1 = C1(X1, Y1, Z1) and C2 is defined similarly. From
the combined query Q3, it is possible to regenerate the data which
would have been retrieved using queries Q1 and Q2 by aggregating
over the non-related groups for each query. For Q1, we would select
the data for which C1 holds, and for each (X1, Z1) pair, we would
aggregate over the X2, Z2, and C2 groups.

While query combining is an effective optimization, there are
limitations. We found that the overall runtime also depends on the
number of unique group-by values per query, and the number of
unique group-by values for a combined query is the product of the
number of unique group-by values of the constituent queries. Thus,
the number of average group-by values per query grows super-
linearly with respect to the number of combinations. However, we
found that as long as the combined query had less than MG unique
group-by values, it was more advantageous to combine than not
(e.g., for our settings of PostgreSQL, we found MG = 100k).
Formulation. Given the above findings, we can now formulate
the problem of deciding which queries to combine as an optimiza-
tion problem: Find the best combination of SQL queries that min-
imizes: α×(total number of combined queries) + ∑i (number of
unique group-by values in combined query i), such that no single
combination has more than MG unique group-by values.

The cost of adding a thread, α , is generally more than MG—for
instance, in PostgreSQL we found α > 100k (MG) for different ex-
perimental settings. By further assuming that the cost of processing
all group by values < MG is same, we can simplify the problem to
finding the minimum number of combined queries such that the
maximum number of group by values per combined query is less
than MG. We prove that the solution to this problem is NP-HARD
by reduction from the PARTITION PROBLEM.

PROOF. Let g1,g2, ...gn be the group by values for the queries
Q1,Q2, ...,Qn we want to combine. We want to find minimum num-
ber m of combined queries, such that each combined query Gi has
at most MG maximum group by values. Recall that in the Parti-
tion problem, we are given an instance of n numbers a1,a2, ...,an,
and we are asked to decide if there is a set S such that ∑ai⊂S ai =
∑ai 6⊂S ai. Let A = ∑ai and consider an instance of Query Combi-

nation problem with gi = M
2×ai

A
G . With this setting, it is easy to see

that the answer to the Partition instance is YES if and only if the
minimum number of combined queries is 2.

Wrinkle and Solution. However, a wrinkle to the above formu-
lation is that it assumes no two SQL queries share a group-by at-
tribute. If two queries have a shared group-by attribute, it may be
more beneficial to combine those two, since the number of group-
by values does not go up on combining them. Overall, we devel-
oped the metric EFGV or the effective increase in the number of
group-by values to determine the utility of combining query Q′ to
query Q: EFGVQ(Q′) = ∏g∈G(Q′) #(g)[[g/∈G(Q)]] where G(Q) is the
set of group-by values in Q, #(g) calculates the number of unique
group-by values in g, and [[g /∈ G(Q)]] returns 1 if g /∈ G(Q) and 0

ZQL Query Specification 

Result Visualizations

Attribute
Spec.

Figure 3: zenvisage basic functionalities
otherwise. In other words, this calculates the product of group-by
values of the attributes which are in Q′ but not Q. Using the EFGV
metric, we then apply a variant of agglomerative clustering [10] to
decide the best choice of queries to combine. As we show in the ex-
periments section, this technique leads to very good performance.

4.2.4 Cache-Aware Execution
Although the previous optimizations were all I/O-based opti-

mizations for ZQL, there are cases in which optimizing the exe-
cution of p-nodes is important as well. In particular, when a pro-
cess has multiple nested for loops, the cost of the p-node may
start to dominate the overall runtime. To address this problem,
we adapt techniques developed in high-performance computing—
specifically, cache-based optimizations similar to those used in ma-
trix multiplication [19]. With cache-aware execution, the ZQL en-
gine partitions the iterated values in the for loops into blocks of
data which fit into the L3 cache. Then, the ZQL engine reorders
the order of iteration in the for loops to maximize the time that
each block of data remains in the L3 cache. This allows the system
to minimize the amount of data the cache needs to eject and thus
the amount of data that needs to be copied from main memory to
the cache, minimizing the time taken by the p-nodes.

5. zenvisage SYSTEM DESCRIPTION
We now give a brief description of the zenvisage system.
Front-end. The zenvisage front-end is designed as a lightweight
web-based client application. It provides a GUI to compose ZQL
queries, and displays the resulting visualizations using Vega-lite [25].
A screenshot of zenvisage in action is shown in Figure 3. A list
of attributes, divided into qualitative and quantitative, is provided
on the left; a table to enter ZQL queries, with auto-completion, is
on top, and the resulting visualizations are rendered at the bottom.
Users also have the option of hiding the ZQL specification table and
instead using a simpler drop-down menu-based interface comple-
mented by a sketching canvas. The sketching canvas allows users to
draw their desired trend that can then be used to search for similar
trends. The menu-based interface makes it easy for users to per-
form some of the more common visual exploration queries, such as
searching for representative or outlier visualizations. Furthermore,
the user may drag-and-drop visualizations from the results onto the
sketching canvas, enabling further interaction with the results.
Back-end. The zenvisage front-end issues ZQL queries to the
back-end over a REST protocol. The back-end (written in node.js)
receives the queries and forwards them to the ZQL engine (written
in Java), which is responsible for parsing, compiling, and optimiz-
ing the queries as in Section 4. SQL queries issued by the ZQL
engine are submitted to one of our back-end databases (which cur-
rently include PostgreSQL and Vertica), and the resultant visual-
ization data is returned back to the front-end encoded in JSON.

6. EXPERIMENTAL STUDY
In this section, we evaluate the runtime performance of the ZQL

engine. We present the runtimes for executing both synthetic and
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realistic ZQL queries and show that we gain speedups of up to 3×
with the optimizations from Section 4. We also varied the charac-
teristics of a synthetic ZQL query to observe their impact on our
optimizations. Finally, we show that disk I/O was a major bottle-
neck for the ZQL engine, and if we switched our back-end database
to a column-oriented database and cache the dataset in memory, we
can achieve interactive run times for datasets as large as 1.5GB.
Setup. All experiments were conducted on a 64-bit Linux server
with 8 3.40GHz Intel Xeon E3-1240 4-core processors and 8GB
of 1600 MHz DDR3 main memory. We used PostgreSQL with
working memory size set to 512 MB and shared buffer size set to
256MB for the majority of the experiments; the last set of experi-
ments demonstrating interactive run times additionally used Vertica
Community Edition with a working memory size of 7.5GB.
PostgreSQL Modeling. For modeling the performance on issuing
multiple parallel queries with varying number of group by values,
we varied the number of parallel queries issued (#Q) from 1 to 100,
and the group by values per query (#V) from 10 to 100000, and
recorded the response times (T). We observed that the time taken
for a batch of queries was practically linearly dependent to both the
number of queries as well as the group by values. Fitting a linear
equation by performing multiple regression over the observed data,
we derived the following cost-model,

T (ms) = 908× (#Q)+1.22× (#V )

100
+1635

As per the above model, adding a thread leads to the same rise in re-
sponse time as increasing the number of group by values by 75000
over the existing threads in the batch. In other words, it is better
to merge queries with small number of group by values. Moreover,
since there is a fixed cost (1635 ms) associated with every batch of
queries, we tried to minimize the number of batches by packing as
many queries as possible within the memory constraints.
Optimizations. The four versions of the ZQL engine we use are:
(i) NO-OPT: The basic translation from Section 4. (ii) PARALLEL:
Concurrent SQL queries for independent nodes from Section 4.2.1.
(iii) SPECULATE: Speculates and pre-emptively issues SQL queries
from Section 4.2.2. (iv) SMARTFUSE: Query combination with
speculation from Section 4.2.3. In our experiments, we consider
NO-OPT and the MQO-dependent PARALLEL to be our baselines,
while SPECULATE and SMARTFUSE were considered to be com-
pletely novel optimizations. For certain experiments later on, we
also evaluate the performance of the caching optimizations from
Section 4.2.4 on SMARTFUSE.
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Figure 4: Runtimes for queries on real dataset (left) and single
chain synthetic query (right)

6.1 Realistic Queries
For our realistic queries, we used 20M rows of a real 1.5GB

airline dataset [1] which contained the details of flights within the
USA from 1987-2008, with 11 attributes. On this dataset, we per-
formed 3 realistic ZQL queries inspired by the case studies in our
introduction. Descriptions of the queries can be found in Table 36.
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Figure 5: Effect of number of visualizations (left) and length of the
chain (right) on the overall runtimes.

Figure 4 (left) depicts the runtime performance of the three re-
alistic ZQL queries, for each of the optimizations. For all queries,
each level of optimization provided a substantial speedup in exe-
cution time compared to the previous level. Simply by going from
NO-OPT to PARALLEL, we see a 45% reduction in runtime. From
PARALLEL to SPECULATE and SPECULATE to SMARTFUSE, we
see 15-20% reductions in runtime. A large reason for why the opti-
mizations were so effective was because ZQL runtimes are heavily
dominated by the execution time of the issued SQL queries. In fact,
we found that for these three queries, 94-98% of the overall run-
time could be contributed to the SQL execution time. We can see
from Table 36, SMARTFUSE always managed to lower the number
of SQL queries to 1 or 2 after our optimizations, thereby heavily
impacting the overall runtime performance of these queries.

6.2 Varying Characteristics of ZQL Queries
We were interested in evaluating the efficacy of our optimiza-

tions with respect to four different characteristics of a ZQL query:
(i) the number of visualizations explored, (ii) the complexity of
the ZQL query, (iii) the level of interconnectivity within the ZQL
query, and (iv) the complexity of the processes. To control for all
variables except these characteristics, we used a synthetic chain-
based ZQL query to conduct these experiments. Every row of
the chain-based ZQL query specified a collection of visualizations
based on the results of the process from the previous row, and ev-
ery process was applied on the collection of visualizations from
the same row. Therefore, when we created the query plan for this
ZQL query, it had the chain-like structure depicted by Figure 4
(right). Using the chain-based ZQL query, we could then (i) vary
the number of visualizations explored, (ii) use the length of the
chain as a measure of complexity, (iii) introduce additional inde-
pendent chains to decrease interconnectivity, and (iv) increase the
number of loops in a p-node to control the complexity of processes.

To study these characteristics, we used a synthetic dataset with 10M
rows and 15 attributes (10 dimensional and 5 measure) with cardi-
nalities of dimensional attributes varying from 10 to 10000. By
default, we set the input number of visualizations per chain to be
100, with 10 values for the X attribute, number of c-nodes per chain
as 5, the process as T (with a single for loop) with a selectivity of
.50, and number of chains as 1.
Impact of number of visualizations. Figure 5 (left) shows the
performance of NO-OPT, SPECULATE, and SMARTFUSE on our
chain-based ZQL query as we increased the number of visualiza-
tions that the query operated on. The number of visualizations was
increased by specifying larger collections of Z column values in the
first c-node. We chose to omit PARALLEL here since it performs
identically to NO-OPT. With the increase in visualizations, the
overall response time increased for all versions because the amount
of processing per SQL query increased. SMARTFUSE showed bet-
ter performance than SPECULATE up to 10k visualizations due to
reduction in the total number of SQL queries issued. However, at
10k visualization, we reached the threshold of the number of unique
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Query Description # c-nodes # p-nodes # T # D # Visual-
izations

# SQL
Queries:
NO-OPT

# SQL
Queries:

SMARTFUSE

1
Plot the related visualizations for airports which have a correlation
between arrival delay and traveled distances for flights arriving there. 6 3 670 93,000 18,642 6 1

2
Plot the delays for carriers whose delays have gone up at airports
whose average delays have gone down over the years. 5 4 1,000 0 11,608 4 1

3
Plot the delays for the outlier years, outlier airports, and outlier
carriers with respect to delays. 12 3 0 94,025 4,358 8 2

Table 36: Realistic queries for the airline dataset with the # of c-nodes, # of p-nodes, # of T functions calculated, # of D functions calculated,
# of visualizations explored, # of SQL queries issued with NO-OPT, and # of SQL queries issued with SMARTFUSE per query.

group-by values per combined query (100k for PostgreSQL), so it
was less optimal to merge queries. At that point, SMARTFUSE be-
haved similarly to SPECULATE.
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Figure 6: Effect of number of independent chains (left) and the
number of loops in a p-node (right) on the overall runtimes.
Impact of the length of the chain. We varied the length of the
chain in the query plan (or the number of rows in the ZQL query) to
simulate a change in the complexity of the ZQL query and plotted
the results in Figure 5 (right). As the number of nodes in the query
plan grew, the overall runtimes for the different optimizations also
grew. However, while the runtimes for both NO-OPT and SPEC-
ULATE grew at least linearly, the runtime for SMARTFUSE grew
sublinearly due to its query combining optimization. While the
runtime for NO-OPT was much greater than for SPECULATE, since
the overall runtime is linearly dependent on the number of SQL
queries run in parallel, we see a linear growth for SPECULATE.
Impact of the number of chains. We increased the number of
independent chains from 1 to 5 to observe the effect on runtimes
of our optimizations; the results are presented in Figure 6 (left).
While NO-OPT grew linearly as expected, all PARALLEL, SPEC-
ULATE, and SMARTFUSE were close to constant with respect to
the number of independent chains. We found that while the over-
all runtime for concurrent SQL queries did grow linearly with the
number of SQL queries issued, they grew much slower compared
to issuing those queries sequentially, thus leading to an almost flat
line in comparison to NO-OPT.
Impact of process complexity. We increased the complexity of
processes by increasing the number of loops in the first p-node from
1 to 2. For the single loop, the p-node filtered based on a positive
trend via T , while for the double loop, the p-node found the out-
lier visualizations. Then, we varied the number of visualizations to
see how that affected the overall runtimes. Figure 6 (right) shows
the results. For this experiment, we compared regular SMARTFUSE
with cache-aware SMARTFUSE to see how much of a cache-aware
execution made. We observed that there was not much difference
between cache-aware SMARTFUSE and regular SMARTFUSE be-
low 5k visualizations when all data could fit in cache. After 5k
visualizations, not all the visualizations could be fit into the cache
the same time, and thus the cache-aware execution of the p-node
had an improvement of 30-50% as the number of visualizations in-
creased from 5k to 25k. This improvement, while substantial, is
only a minor change in the overall runtime.

6.3 Interactivity

The previous figures showed that the overall execution times of
ZQL queries took several seconds, even with SMARTFUSE, thus
perhaps indicating ZQL is not fit for interactive use with large
datasets. However, we found that this was primarily due to the
disk-based I/O bottleneck of SQL queries. In Figure 7 (left), we
show the SMARTFUSE runtimes of the 3 realistic queries from be-
fore on varying size subsets of the airline dataset, with the time that
it takes to do a single group-by scan of the dataset. As we can see,
the runtimes of the queries and scan time are virtually the same,
indicating that SMARTFUSE comes very close to the optimal I/O
runtime (i.e., a “fundamental limit” for the system).

To further test our hypothesis, we ran our ZQL engine with Ver-
tica with a large working memory size to cache the data in mem-
ory to avoid expensive disk I/O. The results, presented in Figure 7
(right), showed that there was a 50× speedup in using Vertica over
PostgreSQL with these settings. Even with a large dataset of 1.5GB,
we were able to achieve sub-second response times for many queries.
Furthermore, for the dataset with 120M records (11GB, so only
70% could be cached), we were able to to reduce the overall re-
sponse times from 100s of seconds to less than 10 seconds. Thus,
once again zenvisage returns results in a small multiple of the time
it takes to execute a single group-by query.

Overall, SMARTFUSE will be interactive on moderate sized datasets
on PostgreSQL, or on large datasets that can be cached in mem-
ory and operated on using a columnar database—which is standard
practice adopted by visual analytics tools [44]. Improving on inter-
activity is impossible due to fundamental limits to the system; in
the future, we plan to explore returning approximate answers using
samples, since even reading the entire dataset is prohibitive.
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Figure 7: SMARTFUSE on PostgreSQL (left) and Vertica (right)

7. USER STUDY
We conducted a user study to evaluate the utility of zenvisage

for data exploration versus two types of systems—first, visualiza-
tion tools, similar to Tableau, and second, general database and data
mining tools, which also support interactive analytics to a certain
extent. In preparation for the user study, we conducted interviews
with data analysts to identify the typical exploration tasks and tools
used in their present workflow. Using these interviews, we identi-
fied a set of tasks to be used in the user study for zenvisage. We
describe these interviews first, followed by the user study details.

7.1 Analyst Interviews and Task Selection
We hired seven data analysts via Upwork [4], a freelancing plat-

form—we found these analysts by searching for freelancers who
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had the keywords analyst or tableau in their profile. We con-
ducted one hour interviews with them to understand how they per-
form data exploration tasks. The interviewees had 3—10 years of
prior experience, and told about every step of their workflow; from
receiving the dataset to presenting the analysis to clients. The rough
workflow of all interviewees identified was the following: first, data
cleaning is performed; subsequently, the analysts perform data ex-
ploration; then, the analysts develop presentations using their find-
ings. We then drilled down onto the data exploration step.

We first asked the analysts what types of tools they use for data
exploration. Analysts reported nine different tools—the most pop-
ular ones included Excel (5), Tableau (3), and SPSS (2). The rest of
the tools were reported by just one analyst: Python, SQL, Alteryx,
Microsoft Visio, Microsoft BI, SAS. Perhaps not surprisingly, an-
alysts use both visualization tools (Tableau, Excel, BI), program-
ming languages (Python), statistical tools (SAS, SPSS), and rela-
tional databases (SQL) for data exploration.

Then, to identify the common tasks used in data exploration, we
used a taxonomy of abstract exploration tasks proposed by Amar
et al. [9]. Amar et al. developed their taxonomy through summa-
rizing the analytical questions that arose during the analysis of five
different datasets, independent of the capabilities of existing tools
or interfaces. The exploration tasks in Amar et al. include: filter-
ing (f), sorting (s), determining range (r), characterizing distribu-
tion (d), finding anomalies (a), clustering (c), correlating attributes
(co), retrieving value (v), computing derived value (dv), and find-
ing extrema (e). When we asked the data analysts which tasks they
use in their workflow, the responses were consistent in that all of
them use all of these tasks, except for three exceptions—c, reported
by four participants, and e, d, reported by six participants.

Given these insights, we selected a small number of appropriate
tasks for our user study encompassing eight of the ten exploration
tasks described above: f, s, r, d, a, c, co, v. The other two—dv
and e—finding derived values and computing extrema, are impor-
tant tasks in data analysis, but existing tools (e.g., Excel) already
provide adequate capabilities for these tasks, and we did not expect
zenvisage to provide additional benefits.

7.2 User Study Methodology
The goal of our user study was to evaluate zenvisage with other

tools, on its ability to effectively support data exploration.
Participants. We recruited 12 graduate students as participants
with varying degrees of expertise in data analytics. Table 37 de-
picts the participants’ experience with different categories of tools.

Tools Count
Excel, Google spreadsheet, Google Charts 8
Tableau 4
SQL, Databases 6
Matlab,R,Python,Java 8
Data mining tools such as weka, JNP 2
Other tools like D3 2

Table 37: Participants’ prior experience with data analytic tools

Baselines. For the purposes of our study, we explicitly wanted to
do a head-to-head qualitative and quantitative comparison with vi-
sual analytics tools, and thus we developed a baseline tool to com-
pare zenvisage against directly. Further, via qualitative interviews,
we compared zenvisage versus against other types of tools, such
as databases, data mining, and programming tools. Our baseline
tool was developed by replicating the visualization selection capa-
bilities of visual analytics tools with a styling scheme identical to
zenvisage to control for external factors. The tool allowed users to
specify the X-axis, Y-axis, dimensions, and filters. The tool would
then populate all visualizations meeting the specifications.

Comparison Points. There are no tools that offer the same func-
tionalities as zenvisage. Visual analytics tools do not offer the abil-
ity to search for specific patterns, or issue complex visual explo-
ration queries; data mining toolkits do not offer the ability to search
for visual patterns and are instead tailored for general machine
learning and prediction. Since visual analytics tools are closer in
spirit and functionality to zenvisage, we decided to implement a
visual analytics tool as our baseline. Thus, our baseline tool repli-
cated the basic query specification and output visualization capabil-
ities of existing tools such as Tableau. We augmented the baseline
tool with the ability to specify an arbitrary number of filters, allow-
ing users to use filters to drill-down on specific visualizations. This
baseline visualization tool was implemented with a styling scheme
similar to zenvisage to control for external factors. As depicted in
Figure 8, the baseline allowed users to visualize data by allowing
them to specify the x-axis, y-axis, category, and filters. The base-
line tool would populate all the visualizations, which fit the user
specifications, using an alpha-numeric sort order. In addition to
task-based comparisons with this baseline, we also explicitly asked
participants to compare zenvisage with existing data mining and
visual analytics tools that they use in their workflow.
Dataset. We used a housing dataset from Zillow.com [5], consist-
ing of housing sales data for different cities, counties, and states
from 2004-15, with over 245K rows, and 15 attributes. We selected
this dataset since participants could relate to the dataset and under-
stand the usefulness of the tasks.
Tasks. We designed the user study tasks with the case studies from
Section 1 in mind, and translated them into the housing dataset.
Further, we ensured that these tasks together evaluate eight of the
exploration tasks described above—f, s, r, d, a, c, co, and v. One
task used in the user study is as follows: “Find three cities in the
state of NY where the Sold Price vs Year trend is very different
from the state's overall trend.” This query required the participants
to first retrieve the trend of NY (v) and characterize its distribution
(d), then separately filter to retrieve the cities of NY (f), compare
the values to find a negative correlation (co), sort the results (s),
and report the top three cities on the list.
Study Protocol. The user study was conducted using a within-
subjects study design [11], forming three phases. First, participants
described their previous experience with data analytics tools. Next,
participants performed exploration tasks using zenvisage (Tool A)
and the baseline tool (Tool B), with the orders randomized to reduce
order effects. Participants were provided a 15-minute tutorial-cum-
practice session per tool to get familiarized before performing the
tasks. Finally, participants completed a survey that both measured
their satisfaction levels and preferences, along with open-ended
questions on the strengths and weaknesses of zenvisage and the
baseline, when compared to other analytics tools they may have
used. The average study session lasted for 75 minutes on average.
Participants were paid ten dollars per hour for their participation.
After the study, we reached out to participants with backgrounds in
data mining and programming, and asked if they could complete a
follow-up interview where they use their favorite analytics tool for
performing one of the tasks, via email.
Metrics. Using data that we recorded, we collected the follow-
ing metrics: completion time, accuracy, and the usability ratings
and satisfaction level from the survey results. In addition, we also
explicitly asked participants to compare zenvisage with tools that
they use in their workflow. For comparisons between zenvisage and
general database and data mining tools via follow-up interviews,
we used the number of lines of code to evaluate the differences.
Ground Truth. Two expert data analysts prepared the ground truth
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Figure 8: The baseline interface implemented for the user study.

for each the tasks in the form of ranked answers, along with score
cut-offs on a 0 to 5 scale (5 highest). Their inter-rater agreement,
measured using Kendall’s Tau coefficient, was 0.854. We took the
average of the two scores to rate the participants’ answers.

7.3 Key Findings
Three key findings emerged from the study and are described

below. We use µ , σ , χ2 to denote average, standard deviation, and
Chi-square test scores, respectively.
Finding 1: zenvisage enables faster and more accurate explo-
ration than existing visualization tools. Since all of our tasks in-
volved generating multiple visualizations and comparing them to
find desired ones, participants were not only able to complete the
tasks faster—µ=115s, σ=51.6 for zenvisage vs. µ=172.5s, σ=50.5
for the baseline—but also more accurately—µ=96.3%, σ=5.82 for
zenvisage vs. µ=69.9%, σ=13.3 for the baseline. A one-way between-
subjects ANOVA, followed by a post-hoc Tukey’s test [45], we
found that zenvisage had statistically significant faster task com-
pletion times compared to the baseline interface, with p value of
0.0069. The baseline requires considerable manual exploration to
complete the same task, explaining the high task completion times;
in addition, participants frequently compromised by selecting sub-
optimal answers before browsing the entire list of results for better
ones, explaining the low accuracy. On the other hand, zenvisage is
able to automate the task of finding desired visualizations, consid-
erably reducing manual effort. Also of note is the fact that the ac-
curacy with zenvisage is close to 100%—indicating that a short 15
minute tutorial on ZQL was enough to equip users with the knowl-
edge they needed to address the tasks—and that too, within 2 min-
utes (on average).

When asked about using zenvisage vs. the baseline in their cur-
rent workflow, 9 of the 12 participants stated that they would use
zenvisage in their workflow, whereas only two participants stated
that they would use our baseline tool (χ2 = 8.22, p<0.01). When
the participants were asked how, one participant provided a specific
scenario: “If I am doing my social science study, and I want to see
some specific behavior among users, then I can use tool A [zenvis-
age ] since I can find the trend I am looking for and easily see what
users fit into the pattern.” (P7). In response to the survey ques-
tion “I found the tool to be effective in visualizing the data I want
to see”, the participants rated zenvisage higher (µ=4.27, σ=0.452)
than the baseline (µ=2.67, σ=0.890) on a five-point Likert scale. A
participant experienced in Tableau commented: “In Tableau, there
is no pattern searching. If I see some pattern in Tableau, such as
a decreasing pattern, and I want to see if any other variable is de-
creasing in that month, I have to go one by one to find this trend.
But here I can find this through the query table.” (P10).
Finding 2: zenvisage complements existing database and data
mining systems, and programming languages. When explicitly
asking participants about comparing zenvisage with the tools they

use on a regular basis for data analysis, all participants acknowl-
edged that zenvisage adds value in data exploration not encom-
passed by their tools. ZQL augmented with inputs from the sketch-
ing canvas proved to be extremely effective. For example P8 stated:
“you can just [edit] and draw to find out similar patterns. You'll
need to do a lot more through Matlab to do the same thing.” An-
other experienced participant mentioned the benefits of not need-
ing to know much programming to accomplish certain tasks: “The
obvious good thing is that you can do complicated queries, and
you don't have to write SQL queries... I can imagine a non-cs stu-
dent [doing] this.” (P9). When asked about the specific tools they
would use to solve the user study tasks, all participants reported
a programming language like Matlab or Python. This is despite
half of the participants reporting using a relational database regu-
larly, and a smaller number of participants (2) reporting using a data
mining tool regularly. Additionally, multiple participants even with
extensive programming experience reported that zenvisage would
take less time and fewer lines of code for certain data exploration
tasks. (Indeed, we found that all participants were able to complete
the user study tasks in under 2 minutes.) In follow-up email inter-
views, we asked a few participants to respond with code from their
favorite data analytics tool for the user study tasks. Two partici-
pants responded — one with Matlab code, one with Python code.
Both these code snippets were much longer than ZQL: as a con-
crete example, the participant accomplished the same task with 38
lines of Python code compared to 4 lines of ZQL. While compar-
ing code may not be fair, the roughly order of magnitude difference
demonstrates the power of zenvisage over existing systems.
Finding 3: zenvisage can be improved. While the partici-
pants looked forward to using custom query builder in their own
workflow, a few of them were interested in directly exposing the
commonly-used trends/patterns such as outliers, through the drag
and drop interface. Some were interested in knowing how they
could integrate custom functional primitives (we could not cover it
in the tutorial due to time constraints). In order to improve the user
experience, participants suggested adding instructions and guid-
ance for new users as part of the interface. Participants also com-
mented on the unrefined look and feel of the tool, as well as the lack
of a diverse set of usability related features, such as bookmarking
and search history, that are offered in existing systems.

8. RELATED WORK
We now discuss related prior work in a number of areas. We be-

gin with analytics tools — visualization tools, statistical packages
and programming libraries, and relational databases. Then, we talk
about other tools that overlap somewhat with zenvisage.
Visual Analytics Tools. Visualization tools, such as ShowMe,
Spotfire, and Tableau [43, 34, 8], along with similar tools from
the database community [18, 31, 32, 26] have recently gained in
popularity, catering to data scientists who lack programming skills.
Using these tools, these scientists can select and view one visualiza-
tion at a time. However, these tools do not operate on collections of
visualizations at a time—and thus they are much less powerful and
the optimization challenges are minimal. zenvisage, on the other
hand, supports queries over collections of visualizations, returning
results not much slower than the time to execute a single query (See
Section 6). Since these systems operate one visualization at a time,
users are also not able to directly identify desired patterns or needs.
Statistical Packages and Programming Libraries: Statistical tools
(e.g., KNIME, RapidMiner, SAS, SPSS) support the easy applica-
tion of data mining and statistical primitives—including prediction
algorithms and statistical tests. While these tools support the se-
lection of a prediction algorithm (e.g., decision trees) to apply, and
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with ranking as (
with distances as (
with distance_ product_year as (
with aggregate_ product_year as (

select product, year, avg(profit) as avg_profit
from table group by product, year) )
select s. product as source, d. product as destination, s.year,

power(s.avg_profit - d.avg_profit,2) as distance_year
from aggregate_ product_year s, aggregate_ product_year d
where s. product!=d. product and s.year=d.year )
select source, destination, sum(distance_year) as distance
from distance_ product_year groupby source, destination )
select source, destination, distance,

rank() over (partition by source order by distance asc)
rank from distances )

select source, destination, distance
from ranking where rank < 10;

Table 38: Verbose SQL query
the appropriate parameters, they offer no querying capabilities, and
as a result do not need extensive optimization. As a result, these
tools cannot support user needs like those describe in the exam-
ples in the introduction. Similarly, programming libraries such as
Weka [22] and Scikit-learn [37] embed machine learning within
programs. However, manually translating the user desired patterns
into code that uses these libraries will require substantial user effort
and hand-optimization. In addition, writing new code and hand-
optimization will need to be performed every time the exploration
needs change. Additionally, for both statistical tools and program-
ming libraries, there is a need for programming ability and under-
standing of machine learning and statistics to be useful—something
we cannot expect all data scientists to possess.
Relational Databases. Relational databases can certainly support
interactive analytics via SQL. In zenvisage, we use relational databases
as a backend computational component, augmented with an engine
that uses SMARTFUSE to optimize accesses to the database, along
with efficient processing code. Thus, one can certainly express
some ZQL queries by writing multiple SQL queries (via procedu-
ral SQL), using complex constructs only found in some databases,
such as common table expressions (CTE) and window functions.
As we saw in Section 7, these SQL queries are very cumbersome
to write, and are not known to most users of databases—during our
user study, we found that all participants who had experience with
SQL were not aware of these constructs; in fact, they responded
that they did not know of any way of issuing ZQL queries in SQL,
preferring instead to express these needs in Python. In Table 38, we
list the verbose SQL query that computes the following: for each
product, find 10 other products that have most similar profit over
year trends. The equivalent ZQL query takes two lines. And we
were able to write the SQL query only because the function D is
Euclidean distance: for other functions, we are unable to come up
with appropriate SQL rewritings. On the other hand, for ZQL, it is
effortless to change the function by selecting it from a drop-down
menu. Beyond being cumbersome to write, the constructs required
lead to severe performance penalties on most databases—for in-
stance, PostgreSQL materializes intermediate results when execut-
ing queries with CTEs. To illustrate, we took the SQL query in Ta-
ble 38, and compared its execution with the execution of the equiv-
alent ZQL. As depicted in Figure 9, the time taken by PostgreSQL
increases sharply as the number of visualizations increases, taking
up to 10X more time as compared to ZQL query executor. This in-
dicates that zenvisage is still important even for the restricted cases
where we are able to correctly write the queries in SQL.
OLAP Browsing. There has been some work on interactive brows-
ing of data cubes [39, 40]. The work focuses on suggestions for raw
aggregates to examine that are informative given past browsing, or
those that show a generalization or explanation of a specific cell—
an easier problem meriting simpler techniques—not addressing the
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Figure 9: ZQL vs SQL: we want to find top 10 similar products for
every product on varying the number of products from 10—5000.

full exploration capabilities provided by ZQL.
Data Mining Languages: There has been some limited work in
data mining query languages, all from the early 90s, on association
rule mining (DMQL [21], MSQL [24]), or on storing and retrieving
models on data (OLE DB [35]), as opposed to a general-purpose
visual data exploration language aimed at identifying visual trends.
Visualization Suggestion Tools: There has been some recent work
on building systems that suggest visualizations. Voyager [25] rec-
ommends visualizations based on aesthetic properties of the visu-
alizations, as opposed to queries. SeeDB [46] recommends visual-
izations that best display the difference between two sets of data.
SeeDB and Voyager can be seen to be special cases of zenvisage.
The optimization techniques outlined are a substantial generaliza-
tion of the techniques described in SeeDB; while the techniques
in SeeDB are special-cased to one setting (a simple comparison),
here, our goal is to support and optimize all ZQL queries.
Multi-Query Optimization: There has been a lot of work on Multi-
Query Optimization (MQO), both classic, e.g., [41, 42, 38], and
recent work, e.g., [16, 23, 27, 17]. Overall, the approach adopted
is to batch queries, decompose into operators, and build “meta”-
query plans that process multiple queries at once, with sharing at
the level of scans, or at the level of higher level operators (either
via simultaneous pipelining or a true global query plan [23]). Un-
like these techniques which require significant modifications to the
underlying database engine—indeed, some of these systems do not
even provide full cost-based optimization and only support hand-
tuned plans [16], in this paper, we adopted two syntactic rewriting
techniques that operate outside of any relational database as a back-
end without requiring any modification, and can thus seamlessly
leverage improvements to the database. Our third optimization is
tailored to the ZQL setting and does not apply more broadly.
Anomaly Discovery: Anomaly detection is a well-studied topic [14,
7, 36]. Our goal in that zenvisage is expected to be interactive, es-
pecially on large datasets; most work in anomaly detection focuses
on accuracy at the cost of latency and is typically a batch operation.
In our case, since interactiveness is of the essence, and requests can
come at any time, the emphasis is on scalable on-the-fly data pro-
cessing aspects.
Time Series Similarity and Indexing: There has been some work
on indexing of of time series data, e.g., [30, 20, 13, 29, 12, 15, 28];
for the attributes that are queried frequently, we plan to reuse these
techniques for similarity search. For other attributes, indexing and
maintaining all trends is impossible, since the number of trends
grows exponentially with the number of indexed attributes.

9. CONCLUSION
We propose zenvisage, a visual analytics tool for effortlessly

identifying desired visual patterns from large datasets. We de-
scribed the formal syntax of the query language ZQL, motivated
by many real-world use-cases, and demonstrated that ZQL is visual
exploration algebra-complete. zenvisage enables users to effec-
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tively and accurately perform visual exploration tasks, as shown by
our user study, and complements other tools. In addition, we show
that our optimizations for ZQL execution lead to considerable im-
provements over leveraging the parallelism inherent in databases.
Our work is a promising first step towards substantially simplify-
ing and improving the process of interactive data exploration for
novice and expert analysts alike.
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APPENDIX
Here, we provide additional details on X, Y, Z, and Process columns
(Appendix A), four real-world complex examples (Appendix B),
and provide a participant’s python code implementation (Appendix
C) for a ZQL task to support the finding 2 in the user-study (Section
7).

A. QUERY LANGUAGE FORMALIZATION:
ADDITIONAL DETAILS

In this section, we present some additional details on our formal-
ization that we did not cover in the main body of the paper.

A.1 Additional Details on X and Y Columns
In addition to using a single attribute for an X or Y column, ZQL

also allows the use of the Polaris table algebra [3] in the X and Y
columns to to arbitrarily compose multiple attributes into a single
attribute; all three operators are supported: +,×, /. Table 39 shows
an example of using the + operator to visualize both profits and
sales on a single y-axis. Note that this is different from the example
given in Table 4, which generates two visualizations, as opposed to
a single visualization. An example using both table algebra and sets
is given in Table 40, which uses the × operator to return the set of
visualizations which measures the sales for the Cartesian product
of ‘product’ and one of ‘county’, ‘state’, and ‘country’.

Name X Y Z
*f1 ‘product’ ‘profit’ + ‘sales’ location.‘US’

Table 39: A ZQL query for a visualization which depicts both prof-
its and sales on the y-axis for products in the US.

Name X Y
*f1 ‘product’ × {‘county’, ‘state’, ‘country’} ‘sales’

Table 40: A ZQL query for the set of visualizations which measures
the sales for one of (‘product’, ‘county’), (‘product’, ‘state’), and
(‘product’, ‘country’).
A.2 Additional Details on the Z Column

ZQL also allows the iteration over attributes in the Z column as
shown in Table 41. The result of this query is the set of all sales

over time visualizations for every possible slice in every dimen-
sion except ‘time’ and ‘sales’. Since both attribute and attribute
value can vary in this case, we need separate variables for each
component, and the full attribute name, value pair (z1.v1) must be
specified. Note that the resulting set of visualizations comes from
the Cartesian product of possible attribute and attribute value pairs.
The first * symbol refers to all possible attributes, while the second
* symbol refers to all possible attribute values given an attribute.
If the user wishes to specify specific subsets of attribute values for
attributes, she must name them individually.

Name X Y Z
*f1 ‘year’ ‘sales’ z1.v1 <– (* \ {‘year’, ‘sales’}).*

Table 41: A ZQL query which returns the set of sales over year
visualizations for each attribute that is not time or sales.

A.3 Additional Details on the Name Column
For deriving visualization collections based on other collections

in the Name column, in addition to + operation, ZQL supports fol-
lowing operations. (i) f3 <– f1-f2: where f3 refers to the list of vi-
sualizations in f1 with the exception of the visualizations which ap-
pear in f2, (ii) f2 <– [f1[i]]: where f2 refers to the ith visualization
in f1, (iii) f2 <– f1[i:j]: where f2 refers to the list of visualizations
starting from ith visualization to the jth visualization in f1, (iv) f2
<– f1.uniq: where f2 refers to the set of visualizations derived
from f1 by removing duplicate visualizations (only the first appear-
ance of each visualization is kept), and (v) f3 IN f1ˆf2: where f3
refers to the list of visualizations in f1 which also appear in f2; an
“intersection” between lists of visualizations in some sense. These
operations are useful if the user wants to throw away some visual-
izations, or create a new larger set of visualizations from smaller
sets of visualizations.

After a visualization collection has been derived using the Name
column, the user may also define axis variables in the X, Y, and Z
columns using the special _ symbol to bind to the derived collec-
tion. For example in Table 43, v2 is defined to be the iterator which
iterates over the set of product values which appear in derived col-
lection f3; in this case, v2 iterates over all possible products. y1
is defined to be the iterator over all the values in the Y column of
f3. Although in the case of Table 43, the only value y1 takes on
is ‘sales’, y1 and v2 are considered to be declared together, so the
iterations for y1, v2 will look like: [(‘sales’, ‘chair’), (‘sales’, ‘ta-
ble’), ...]. Also in this case, the variable y1 is not used, however,
there may be other cases where it may be useful to iterate over mul-
tiple axis variables. The defined axis variables can then be used to
create other visualization collections or within the Process column
as shown in the 4th row of Table 43.

Finally, visualization collections may also be ordered based on
the values of axis variables: f2 <– f1.order. Here, f1 is ordered
based on the axis variables which appear together with the –> sym-
bol. Table 42 shows an example of such an operator in use.

A.4 Additional Details on the Process Column
Although visualization collections typically outnumber processes,

there may occur cases in which the user would like to specify mul-
tiple processes in one line. To accomplish this, the user simply
delimits each process with a comma and surrounds each declara-
tion of variables with parentheses. Table 44 gives an example of
this.

B. ADDITIONAL COMPLETE EXAMPLES
To demonstrate the full expressive power of ZQL, we present

four realistic, complex example queries. We show that even with
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Figure 10: Custom query builder with bar charts Figure 11: Custom query builder with scatterplots
Name X Y Z Process

f1 ‘year’ ‘sales’ v1 <– ‘product’.* u1 <– argminv1[k = ∞]T ( f 1)
*f2=f1.order u1 –>

Table 42: A ZQL query which reorders the set of sales over years visualizations for different products based on increasing overall trend.
Name X Y Z Process

f1 ‘year’ ‘sales’ v1 <– ‘product’.(* - ‘stapler’)
f2 ‘year’ ‘sales’ ‘stapler’

f3=f1+f2 y1 <– _ v2 <– ‘product’._
f4 ‘year’ ‘profit’ v2 v3 <– argmaxv2k = 10]D( f 3, f 4)

*f5 ‘year’ ‘sales’ v3
Table 43: A ZQL query which returns the sales over years visualizations for the top 10 products which have the most different sales over
years visualizations and profit over years visualizations.

Name X Y Z Process
f1 - - -
f2 ‘year’ ‘sales’ v1 <– ‘product’.* (v2 <– argmaxv1[k = 1]D( f 1, f 2)), (v3 <– argminv1[k = 1]D( f 1, f 2))

*f3 ‘year’ ‘sales’ v2
*f4 ‘year’ ‘sales’ v3

Table 44: A ZQL query which returns the sales over years visualizations for the product that looks most similar to the user-drawn input and
most dissimilar to the user-drawn input.

complicated scenarios, the user is able to capture the insights she
wants with a few meaningful lines of ZQL.
Query 1. The stapler has been one of the most profitable products
in the last years for GlobalMart. The Vice President is interested in
learning about other products which have had similar profit trends.
She wishes to see some representative sales over the years visual-
izations for these products.

Table 45 shows what the query that the Vice President would
write for this scenario. She first filters down to the top 100 prod-
ucts which have the most similar to profit over year visualizations
to that of the stapler’s using the argmin in the second row. Then,
from the resulting set of products, v2, she picks the 10 most repre-
sentative set of sales over visualizations using R, and displays those
visualizations in the next line with f4. Although the Vice President
does not specify the exact distance metric for D or specify the exact
algorithm for R, she knows zenvisage will select the most reason-
able default based on the data.
Query 2. The Vice President, to her surprise, sees that there a
few products whose sales has gone up over the last year, yet their
profit has declined. She also notices some product’s sales have
gone down, yet their profit has increased. To investigate, the Vice
President would like to know about the top 10 products who have
the most discrepancy in their sales and profit trends, and she would
like to visualize those trends.

This scenario can be addressed with the query in Table 46. The
Vice President names the set of visualizations for profit over month
f1 and the sales over month visualizations f2. She then compares
the visualizations in the two set using the argmax and retrieves the
top 10 products whose visualizations are the most different. For
these visualizations, she plots both the sales and profit over months;
y1 <– {‘sales’, ‘profit’} is a shortcut to avoid having to separates
rows for sales and profit. Note that the Vice President was careful
to constrain ZQL to only look at the data from 2015.
Query 3. The Vice President would like to know more about the

differences between a product whose sales numbers do not change
over the year and a product that has the largest growth in the num-
ber of sales. To address this question, she writes the query in Ta-
ble 47. The first R function call returns the one product whose
sales over year visualization is most representative for all products;
in other words, v2 is set to the product that has the most average
number of sales. The task in the second row selects the product v3
which has the greatest upward trending slope T for sales. Finally,
the Vice President tries to finds the y-axes which distinguish the
two products the most, and visualizes them. Although we know v2
and v3 only contain one value, they are still sets, so argmax must
iterate over them and output corresponding values v4 and v5.
Query 4: Finally, the Vice President wants to see a pair of dimen-
sions whose correlation pattern (depicted as a scatterplot) is the
most unusual, compared to correlation patterns of other pairs of at-
tributes. To address this question, she writes the query in Table 48.
She keeps the Z column empty as she does not want to slice the
data. Both X and Y refer to a set M consisting of all the attributes
in the dataset she wishes to explore. The task in the second row
selects the X and Y attributes whose sum of distances from other
visualizations (generated by considering all pairs of attributes)is the
maximum.

C. USER STUDY: ADDITIONAL DETAILS
ON FINDING 2

Participant P6's python code implementation for a task where we
want to find a pair of X and Y axes where two states ’CA’ and ’NY’
differ the most:

[language=python]
import pandas
import numpy as np
def generate_maps(date_list, d, Y, Z):

d = d[d[’State’]==Z][np.append(date_list, Y)]
maps = {}
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Name X Y Z Viz Process
f1 ‘year’ ‘profit’ ‘product’.‘stapler’ bar.(y=agg(‘sum’))
f2 ‘year’ ‘profit’ v1 <– ‘product’.(* \ {‘stapler’}) bar.(y=agg(‘sum’)) v2 <– argminv1[k = 100]D( f 1, f 2)
f3 ‘year’ ‘sales’ v2 bar.(y=agg(‘sum’)) v3 <– R(10,v2, f 3)

*f4 ‘year’ ‘sales’ v3 bar.(y=agg(‘sum’))
Table 45: The ZQL query which returns 10 most representative sales over year visualizations for products which have similar profit over
year visualizations to that of the stapler’s.

Name X Y Z Z2 Viz Process
f1 ‘month’ ‘profit’ v1 <– ‘product’.* ‘year’.2015 bar.(y=agg(‘sum’))
f2 ‘month’ ‘sales’ v1 ‘year’.2015 bar.(y=agg(‘sum’)) v2 <– argmaxv1[k = 10]D( f 1, f 2)

*f3 ‘month’ y1 <– {‘sales’, ‘profit’} v2 ‘year’.2015 bar.(y=agg(‘sum’))
Table 46: The ZQL query which returns the sales over month and profit over month visualizations for 2015 for the top 10 products which
have the biggest discrepancies in their sales and profit trends.

for id, item in d.iterrows():
date = ""
for k in date_list:

date += str(item[k])
if date not in maps:

maps[date] = []
maps[date].append(item[Y])

maps = dict([(k, np.mean(v)) for k, v in maps.items()])
return maps

def filter(d, X, Y, Z):
’’’
X : Month, Year, Quater
Y : SoldPrice, ListingPrice, Turnover_rate
Z : State Name such as CA
’’’
maps = {}
if X ==’Year’:

date_list = [’Year’]
elif X ==’Quater’:

date_list = [’Year’, "Quater"]
elif X ==’Month’:

date_list = [’Year’, "Quater", "Month"]
return generate_maps(date_list, d, Y, Z)

def mapping(map1, map2):
’’’ calculate distance’’’

t = 0.0
for k, v in map1.items():

t += (map2[k] - v) * (map2[k] -v)
return t

if __name__=="__main__":
import matplotlib.pyplot as plt
import numpy.linalg as LA
d = pandas.read_csv("./tarique_data")
XSet = ["Year", "Quater", "Month"]
YSet = ["SoldPrice", "ListingPrice", "Turnover_rate"]
result = [(X, Y, mapping(filter(d, X, Y, ’CA’),

filter(d, X, Y, ’NY’))) for X in XSet for Y in YSet]
best_x, best_y, difference = sorted(result,

cmp=lambda x, y: -cmp(x[2],y[2]))[0]
CA, NY = filter(d, best_x, best_y, ’CA’),

filter(d, best_x, best_y, "NY")
xset = CA.keys()
xset.sort()
y_CA, y_NY = [CA[x] for x in xset],

[NY[x] for x in xset]
plt.plot(range(len(xset)), y_CA, label=’CA’)
plt.plot(range(len(xset)), y_NY, label=’NY’)
plt.legend()
plt.show()
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Name X Y Z Viz Process
f1 ‘year’ ‘sales’ v1 <– ‘product’.* bar.(y=agg(‘sum’)) v2 <– R(1,v1, f 1)
f2 ‘year’ y1 <– M v2 bar.(y=agg(‘sum’)) v3 <– argmaxv1[k = 1]T ( f 1)
f3 ‘year’ y1 v3 bar.(y=agg(‘sum’)) y2,v4,v5 <– argmaxy1,v2,v3[k = 10]D( f 2, f 3)

*f4 ‘year’ y2 v6 <– (v4 | v5) bar.(y=agg(‘sum’))
Table 47: The ZQL query which returns varying y-axes visualizations where the following two products differ the most: one whose sales
numbers do not change over the year and another which has the largest growth in the number of sales.

Name X Y Z Viz Process
f1 x1 <– M y1 <– M
f2 x2 <– M y2 <– M x3,y3 <– argmaxx1,y1[k = 1]sumx2,y2D( f 1, f 2)

*f3 x3 y3 scatterplot
Table 48: The ZQL query which returns scatter plot visualization between a pair of attributes whose pattern is most unusual, i.e very different
from the patterns made by any other pair of attributes in M.
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