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Order StatisticsOrder Statistics

l Read Chapter 10. 
We skip Chapter 10.1 (min/max), read at home.
Next time we will go to Chapter 7 (Heaps).

l Problem: Find the i-th smallest element (Rank-i).
If i=1           Minimum

i=n             Maximum
i= n/2     Median

l Possible solution:
» Sort
» Index into A(i).

l We can do better !

O(n lg n)

Lecture 5, Tuesday 4/17/01
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Randomized selectionRandomized selection

l Divide and conquer approach:
RS(A,p,r,i)

if p==r  then return A(p)
q=RandomPartition(A,p,r)
k=q-p+1
if i< k  then return RS(A,p,q-1,i)

i>k   then return RS(A,q+1,r,i-k)
i==k  then return A(q)

l Correctness:
» Assume correct for size at most n=r-p+1
» after the partition, the arrays are smaller than n, can 

apply induction.
» Claim: need to search only one part 
» Explain the 3 cases.
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Performance of Random Performance of Random 
SelectionSelection

l Lucky case:

l What if 99/100 instead of 9/10 ??

l Bad case:
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Analysis continuedAnalysis continued

l Let T(n) be the expected running time.
Condition on partition outcome:

l Substitute               , choose c large enough for T(1):
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Deterministic Order StatisticsDeterministic Order Statistics

l The randomized order statistics is very fast in practice
(just like quick-sort, same additional tricks will help).

l Theoretically interesting question: 
Is there a deterministic linear time order-statistics 
algorithm ?

l Deterministic selection algorithm (select i-th smallest):
» Divide n elements into groups of 5.
» find median in each group (brute force) 
» Use select recursively to find median among n/5 medians.

(i.e. select n/2-nd smallest)
» Partition around this median.
» Recurse on the “appropriate” part, update i if necessary.
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Deterministic order statistics Deterministic order statistics --
contcont

l Correctness - as before. All we changed was the pivot 
choice.

l Time: 

l Recursion:

1at least 1/2 of the medians are 52 10
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Deterministic selectionDeterministic selection

l Homework: 
analyze with groups of 4 elements and groups of 6 
elements.

l Observe that we can get deterministic variant of
quicksort !

» Can use as a black-box O(n) partitioning into 2 equal parts.
» We get recurrence T(n)=2T(n/2)+Θ (n), giving us 

Θ (n lg n) total running time.
» (do you think it will work well in practice ??)


