Lecture 6, Thursday 4/19/01
Data Structures - Heaps

Several possible approaches

e We will be developing data structures that
support queries and updates.

e Example where a data structure will help:
» Event driven system

» event: (start of call i, time when i starts
(end of call j, time when j ends]

» Processing a new call introduces 2 events - start and end.

» Simulator: pick next event, process it, maybe update event
queue.

» How to maintain events ?
Need support for fast:
— enter new event
— pick “next event”, i.e. event with smallest time key.

61

e Keep all events in a list.
(What is the problem with using array ??
the number of events is unknown !)

» Easy to insert - O(1) - |
» hard to extract - W(n) Explaln Why "

e Sorted list:

» Easy to extract - O(1)

» Hard to insert - W(n) } Explain Why |
e We would like something like:

» insert O(lg n)
» extract O(lg n)

} Tradeoff

Heaps

Fixing a broken heap

e Nearly complete binary tree with:

Heap property: Alparent(()] ° Ali]_|

e Claim: max is at the root (by induction on the size of the
heap)

8
6 4 Data: 864513
/\ /\ Index: 123456
5 1 3 o

Pointers are not the most efficient solution.

Instead, parent(i) is stored in H
Example: parent of the 5th element is at 2. 63

e Assume problem is only at the root:

ﬂ; exchange

1
/\
A}%. AT }5{. N
8 2 4 o 2 4 o

e Now the problem “moved” down, into right tree.
Recurse in this tree, exchanging 5 and 8, its largest
child.

Correctness of fixing the heap

b is larger then c, and a, thus the only problem can be
between a
and one of its children.

/a\ /b\
b [a [

Formal proof - by induction on the height of a.

This procedure will be called Heapify(A,i,n).
Makes subtree rooted at A(i) into a heap.

e Time: O(lg n). (Why ??)
65

Extract max
o max=A(1)
|Agl) =A(l ast) O(Ig n)

st --
Heapi fy(A, 1,1 ast)
e How to build a heap initially ?

» for i=n down to 1
Heapify(A,i,n) nloops, O(log n) each,
end Total: O(nlog n)

» But “bottom loops™ take less time, since height is smaller !

» Observation: cost of Heapify prop. to the height, i.e. #
visited levels.
1stlevel: height 1, 251 nodes,
2nd level: height 2, 2¥2 nodes, etc.

Total: 1:251+2.2k-243.2k-34.. k. 20

¥ ok ok i ok 112 __pea_g
R % SEP Y ke T

Inserting new element

e Similar to Heapify:
| ast ++
A(l ast) =new el ement
i =l ast
while paregl(\) 1= null
i i arent (i return
2R 8

el se parent (i))
i=parent (i
end
end
e Example:

7 @
exchange
‘/4\l with parent ‘/4\l
if parent smaller
2 0 1 ©@ 2 0 1 6

e Propagate up, O(lg n). Correctness ??
67

