CS161: Design and Analysis of Algorithms

Spring 2001

Assignment #1

Due: Thursday, April 26th, 2001. In class.

- **Problem 1.** Simply answer True/False: Can you say that the function $f(x) = 2^{\sqrt{\log n}}$ is: O(n)? $O(n^2)$? $O(\log n)$?
- **Problem 2.** Do problem 2.1–1 (page 31). (We expect a formal and concise proof.)
- **Problem 3.** Do problem 2.1–4 (page 31). (We expect a formal and concise proof.)
- **Problem 4.** Give an asymptotic expression for each of the following recurrences. For each recurrence show $T(n) = \theta(f(n))$ for an appropriate function f(n). You must prove your answer (you may rely on the master theorem). Assume T(1) = 1 and T(n) = 0 for $n \leq 0$.
 - 1. $T(n) = 4T(n/2) + n/\log^2 n$
 - 2. $T(n) = 4T(n/2) + n^2/\log^2 n$
 - 3. $T(n) = 4T(n/2) + n^3/\log^2 n$
 - 4. T(n) = 3T(n/3 2) + n/2
 - 5. $T(n) = T(\lfloor \sqrt{n} \rfloor) + 1$
- **Problem 5.** Consider the deterministic quicksort algorithm with the implementation of the partition subroutine described during the lecture (the pivot is the first element in the list).
 - **a.** Give an example of a list of 16 elements on which the algorithm has the worst running time. Justify your answer.
 - **b.** Give an example of a list of 16 elements on which the algorithm has the best running time. Justify your answer.
- **Problem 6.** Describe (in precise, unambiguous English) An algorithm which takes two UNORDERED sets as input: set A, with n elements and set B, with m elements and returns the intersection of the these two sets. (note: there are no repeated elements within A or B). Show that your algorithm is correct. State and prove the asymptotic running time for your algorithm. State any assumptions you make about the data structures you use.

Extra credit: Do problem 1.3-7 (page 16).