
CS255: Cryptography and Computer Security Winter 2008

Programming Project #1
Due: Friday, February 8th, 2008.

1 Overview

For the first programming assignment you will be implementing a password manager, similar (but
inferior in many ways) to your operating system’s keychain software. The password manager must
be able to operate securely either locally or over a network. It must be protected against both an
adversary who takes over the network, and to a lesser degree against one who takes over the server.

2 Features

Any password manager’s essential function is a secure map from the names of resources to their
passwords, protected by a highly secret master password. For simplicity, we will assume that these
are all strings. In particular, there are no additional data such as user name, site URL or notes.
The software is divided up into a client, which manages the user interface, and a remote server,
which stores the database of passwords. For simplicity, our server only supports a single user.

• The user must be able to add, remove and change (resource name, password) pairs. These
pairs should be stored on the server, and should persist across restarts of both the client and
server.

• The user must be able to change the master password at any time, without re-encrypting all
of his stored passwords.

• The client software should not need to save any state between sessions. That way, it can be
used on multiple machines at the same time without synchronizing state between the clients.

3 Threat Model

The password manager should be secure against the following attackers:

• Attackers who simply try to log into the server should only be able to mount an online attack
against the user’s master password. That is, they shouldn’t be able to retrieve anything useful
for an offline dictionary attack.

• Active network attackers should not be able to read any of the user’s passwords. Nor should
they be able to tamper with either the client or the server: they should’t be able to convince
the client to accept the wrong password (even an old one for the same resource), or to convince
the server to change or delete a password. Of course, a network attacker can deny service;
you do not need to make any effort to prevent this.

1



• Attackers who break into the server by some external means should not be able to read any
of the passwords stored there, though they might tamper with them or delete them.

You are not required to protect the secrecy of the user’s resource names or operations; that is,
an eavesdropper may be able to determine whether the user is adding a new password, modifying
one, or looking one up, and for what site. Nor are you required to protect the length of the stored
passwords.

4 Cryptographic Requirements

4.0.1 Counter Mode (CTR)

You should use AES encryption in counter mode to protect the secrecy of the stored passwords
(and, if you’re doing the extra credit, the resource names).

Counter mode encryption generates a pseudorandom sequence by encrypting successive values of
a counter. Formally, encryption of a message (m0, m1, . . . ,mn) is (IV, E(k, IV )⊕m0, E(k, IV +1)⊕
m1, . . . , E(k, IV + n)⊕mn). As in other modes of encryption, new IV should be chosen randomly
each time. Unlike most other modes of operation, counter mode does not require padding: the
ciphertext length can be truncated to the length of the actual message without losing information.

4.1 Integrity Check using MACs

You will need to protect the integrity of messages on the network in order to prevent an attacker
from modifying them while in transit. To prevent replay attacks without storing persistent state on
the client, you should use a different MAC key in each session. You will still need a unique nonce
on each message, but because of the per-session MAC, they can be unique-per-session instead of
globally unique.

5 Components

5.1 Map

The primary functionality of the password manager is a secure, persistent, networked map from
strings to strings. This functionality is developed in layers: FileMap provides a persistent map;
NetworkedMap (along with NetworkedMapServer and NetworkedMapServerThread) ex-
ports it over the network; EncryptedMap provides secrecy and authentication; and StringMap
translates to and from Strings using the UTF-8 character set.

You don’t need to implement any of these maps: the only security-related one is EncryptedMap,
and it’s fairly trivial.

The maps included in this package do not quite conform to the Java map specifications in that
they treat byte arrays as immutable objects. It is important to realize that because arrays are ac-
tually mutable, two arrays with the same elements are not considered equal by the Java standard li-
braries. As a result, FileMap and the like behave differently from, say, a HashMap<byte[],byte[]>.

2



5.2 Aes and Hmac

Aes and Hmac provide convenience classes over the Java cryptographic library. Hmac wraps the
system implementation of HMAC/SHA1, and Aes uses HMAC and the system implementation of
AES to implement authenticated AES counter-mode encryption.

You need to implement the Aes class; the Hmac class is provided for you.

5.3 BlobIO

BlobIO handles input and output using arrays of bytes (blobs), and, for convenience, arrays of
arrays of bytes. Its instance FileBlobIO implements atomic file operations using temporary files
and renaming semanatics. Its instance IOBlobIO uses the standard input/output libraries to send
over pipes and network sockets.

You need to implement the SecureBlobIO instance, which will provide a channel whose integrity
is protected from network attackers.

5.4 Client

The Client class implements the password manager’s GUI. The current client is fairly limited; for
instance, it cannot connect to any server other than localhost. You’re welcome to improve this
class, but it’s not really the point of the project.

5.5 NetworkedMapServer

This class implements the network server, saving files in a directory called net test. You don’t need
to modify it.

5.6 Test

The test class will conduct a simple series of tests over a virtualized network. It won’t involve the
GUI, and it can be built and run even if you don’t have SWT installed.

6 Implementation

You will be using the JCE (Java Cryptographic Extensions) while programming for this assignment.
You should spend some time getting familiar with the provided framework.

6.1 Getting the code

Download the pp1.tar.gz file linked on site to a directory in your account. Untar and unzip using
the following command:

tar xvzf pp1.tar.gz

This should create the source tree for the project under the pp1/ directory.

3



6.2 Description of the code

Here is a brief description of the files we provide. The files you need to change are in bold

Makefile Makefile for the project

pwman/Aes.java The implementation of AES modes

pwman/SecureBlobIO.java Cryptographic network protocol

pwman/Hmac.java Wrapper class around HMAC/SHA1

pwman/BlobIO.java Binary Input/Output module

pwman/Client.java GUI client

pwman/NetworkedMapServer.java Main server

pwman/Test.java Test harness

pwman/EncryptedMap.java Encrypted implementation of binary map

pwman/NetworkedMap.java Network map protocol

6.3 Running the code

To build the project, enter the pp1 directory and type make. To test the system, type make run-
test. To use the client and server, type make all run-server & followed by make run-client. The
client will only compile and run on a machine which has the SWT graphics library installed; this
can be obtained on Ubuntu by typing sudo apt-get install libswt3.2-gtk-java. To erase created class
files along with cores, emacs temporary files and the test and net test directories, type make clean.

Note: Your solution will be tested on the elaine machines. So, please test your code on one of
the elaines before submitting.

4



6.4 Crypto Libraries and Documentation

Java’s security and cryptography classes are divided into two main packages: java.security.* and
javax.crypto.*. They have been integrated into Java 2 Platform Standard Edition v 1.5. Classes for
cryptographic hashing and digital signatures (not required for project 1) can be found in security,
whereas ciphers and MACs are located in the JCE.

The following are some links to useful documentation :

• Java API
http://java.sun.com/j2se/1.5.0/docs/api

• JCE Reference Guide
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html

• Java Tutorial
http://java.sun.com/docs/books/tutorial/

• Chapter 6 from Java Cryptography by Jonathon Knudsen
http://www.oreilly.com/catalog/javacrypt/chapter/ch06.html

Some classes/interfaces you may want to take a look at:

- javax.crypto.KeyGenerator

- javax.crypto.SecretKey

- javax.crypto.Mac

- javax.crypto.Cipher

- javax.crypto.SecretKeyFactory

- java.security.SecureRandom

7 Miscellaneous

7.1 Questions

• We strongly encourage you to use the class newsgroup (su.class.cs255) as your first line of
defense for the programming projects. TAs will be monitoring the newsgroup daily and, who
knows, maybe someone else has already answered your question.

• You can also email the staff at cs255ta@cs.stanford.edu

5



7.2 Deliverables

In addition to your well-commented solution to the assignment, you should submit a README
containing the names, leland usernames and SUIDs of the people in your group and a description
of the design choices you made in implementing each of the required security features.
When you are ready to submit, make sure you are in your pp1 directory and type:
make clean
/usr/class/cs255/bin/submit.

7.3 Extra credit

The following options are available for extra credit.

• For minor extra credit, change EncryptedMap so that the keys to the map (the resource
names) are kept secret as well as the values (their passwords).

• For major extra credit, change NetworkedMap to contact multiple servers using secret sharing.
This will protect the password manager against a single failed or malicious server. If you
decide to do this, don’t worry about implementing a distributed transaction manager (which
would be required for synchronization). Just assume that only one client will be making a
request at any given time.

If you attempt the extra credit, be sure to explain its design in your README file.

6


