Programming Assignment 1 Winter 2010

CS 255: Intro to Cryptography

Prof. Dan Boneh milestone 1: due Jan. 27, milestone 2: due Feb. 5

1 Introduction

Have you ever been bothered by your grandmother attempting to friend you on facebook? Have
your parents been less than thrilled by some inopportune comments you made on your favorite social
networking sites while you were perhaps not in the most coherent state? Then this assignment is
for you. The goal of the assignment is to build functionality on top of twitter that allows you to
encrypt tweets to subgroups of your twitter followers — just think, no more mom and dad reading
the ”suepr wstaed” messages you left for all of the world to see.

2 Background Material

Rather than completely rebuild twitter, we will use several useful tools to build our encrypted tweet
system, so you should familiarize yourself with these before you get started. We list these here:

o Firefor: We will be using several add-ons that only work for Firefox, so you’ll have to use it
even if you prefer another browser.

— Download Firefox: http://www.mozilla.com/en-US/firefox/

e Twitter: This should be obvious unless you’ve been living under a rock for the past few years.
However, you’ll want at least two throwaway twitter accounts so that you can test all of the
encryption/decryption algorithms you’ll be running for the assignment.

— http://www.twitter.com
e Javascript: We will be programming exclusively in Javascript for this assignment
— A great reference for learning javascript: http://www.w3schools.com/js/default.asp

o GreaseMonkey: GreaseMonkey is a Firefox add-on that allows users to write scripts that
change HTML content on-the-fly. This assignment will consist of a single GreaseMonkey script
(most of which has already been done for you), so you will need to download GreaseMonkey
and obtain some minimal understanding of how it works.

— GreaseMonkey site: http://www.greasespot.net/
— GreaseMonkey download: https://addons.mozilla.org/en-US /firefox/addon/748

— GreaseMonkey wiki (that is actually the easiest way to learn GreaseMonkey):
http://wiki.greasespot.net/Main_Page



e AES: A large chunk of the assignment will involve building secure primitives with the Ad-
vanced Encryption Standard (AES). While no one knows exactly why AES is difficult to
break, you should be somewhat familiar with how it works.

— AES wiki: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

o Pseudorandom Number Generator: Spoiler alert: at some point in the assignment, you will
need to use a PRG. Understanding how these work will make this portion of the assignment
much easier for you to understand.

— Random number generation wiki: http://en.wikipedia.org/wiki/Random_number_generation

— Pseudorandom number generator wiki:
http://en.wikipedia.org/wiki/Pseudorandom _number_generator

o Message authentication code: Used to provide message integrity, these are just short bit
strings used to verify that a message actually came from the purported sender. These will be
covered in class in the near future, but for now it may be helpful to understand what they
do.

— MAC wiki: http://en.wikipedia.org/wiki/Message_authentication_code

e Chosen plaintext attack security: This is one model of security that cryptographers use to
show properties of various cryptographic schemes. It will be covered in class, but, despite its
complicated-sounding name, CPA security is not too difficult to understand. You will need
to understand it in order to complete this assignment.

— Cipertext indistinguishability wiki: http://en.wikipedia.org/wiki/IND-CPA

Well, we’re finally done with background material. If you don’t understand something, it is probably
coming up soon in lecture, but feel free to ask anyways.

3 Assignment Details

Let’s get to the nuts and bolts of the assignment. As we have already established, you will be
building an encrypted twitter system. But wait, good news! Most of this has already been done
for you. If you haven’t already, you’ll want to download the GreaseMonkey script CS255 from the
course website and peruse it. If you look through it, you’ll see there are five functions that you are
responsible for completing: Encrypt, Decrypt, GenerateKey, SaveKeys, and LoadKeys. These
are in the very first section of the code and it should be clear to see what to do with each one.

We will be doing more than basic encryption and decryption for one twitter account, though. In
addition to this basic functionality, you will need the notion of groups. Have you ever wished you
could have separate facebook accounts for your friends and family? We will create just that sort of
notion in twitter here. You will be able to create multiple groups, and assign each person following
your tweets to a group. You will have a separate secret key for each group, so that people in one
particular group cannot see tweets meant for another. Thus, you can update your family with
”studying so hard omg lol omg lol” and your friends with "keg to finish, come now” and no one
will be the wiser.



Hopefully it should be intuitive at this point what needs to be done. However, we will now
specifically spell out the requirements. We are dividing up the assignment into two milestones.
The specific requirements for milestone one are as follows:

e Maintain a secure database of other people you are following on twitter that are using your
encrypted key system. This entails:

— Securely storing each user, their key, and their group assignment for you (using the
SaveKeys function and any helper functions that you deign to write). Note that there
is UI framework in the code that eliminates all of the display issues — you only need to
focus on the security/cryptography issues. You can find this UI framework in the code
and under Settings on twitter.

— Securely loading all of these things (using LoadK eys and whatever helper functions you
choose) from a data store.

— The database security can be a little thorny: obviously, if someone has taken over your
browser, then they can get your keys and you are hosed. Thus, our requirement for the
database security is that any attacker who has access to all of your stored material must
not be able to learn any significant information about any of your keys. This means
that an attacker that sits down at a computer you were using after you have closed the
browser cannot get your keys (which is awesome if you have to share a computer).

e Maintain a secure database of your groups and their respective keys. Thus you must:
— Securely store/load each of these with the other sensitive data mentioned above
e Provide a function to generate keys for the user

— Note that these keys need to be indistinguishable from random. Remember, calling a
function in the javascript math library is not indistinguishable from random.

e Build encryption and decryption functions that provide CPA security for tweets.

— This should be straightforward enough, but note that you are required to build on top
of the AES protocol provided in the script. Do not attempt to implement RSA or Diffie-
Hellman or some other protocol — it will probably not be a secure implementation and
will take you much longer than doing it this way.

— Why CPA security? If someone can predict or influence your tweets, then this is a nice
feature to have.

For milestone 2 we add message integrity (to be covered in the lecture). The requirements are:

e Build a MAC system based on the AES implementation given to you.

— Note that you are NOT allowed to use the SHA-256 implementation lurking in the bot-
tom of the script. The point of the assignment is to understand how to build primitives.

e Use your MAC system to authenticate tweets.

e Use your MAC system to make sure keys in the key store haven’t been changed between
program runs.



4 Deliverables

e Code.

e For each milestone you will need to submit a write-up describing your design choices. While
we do not expect formal, rigorous proofs, we do expect a proof-like explanation of why
your scheme is secure under the guidelines given by the assignment. A good write-up will
include a detailed conceptual description of all encryption, decryption, storage, and generation
operations and an argument explaining how an attacker that can break some part of your
scheme can also break some underlying primitive that is believed to be secure.

5 Grading
Your system will be graded on two bases:

e Does it work?

— We will check to make sure that your system works. All tweets entered should be
correctly displayed and interpreted, the key store should work, and the script should not
become unresponsive or crash.

— Your security will not matter for this part of the grade. However, if your encryp-
tion/decryption methods fail and cause bad things to happen that are visible to the
user, then you will lose points.

o [s it secure?
— Your write-up should detail a fully secure protocol and clearly explain why your scheme

1S secure.

— We will go through your code and check for security issues. Thus, it would be extremely
helpful (and possibly beneficial to your grade) if you clearly comment your steps to
ensure security.

— You should be able to mitigate all possible attacks on your scheme with what has been
covered in class (or will be covered soon).



