CS255: Cryptography and Computer Security Winter 2012

Assignment #3

Due: Monday, Mar. 12, 2012. (in class)

Problem 1 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent e; and a private exponent d; such
that e; - d; = 1 mod (V). At first this appears to work fine: to encrypt a message to
Bob, Alice computes ¢ = m®e" and sends ¢ to Bob. An eavesdropper Eve, not knowing
dpon appears to be unable to decrypt c¢. Let’s show that using eq. and de.. Eve can
very easily decrypt c.

a. Show that given eqy and dey Eve can obtain a multiple of p(V).

b. Show that given an integer k& which is a multiple of ¢(NN) Eve can factor the mod-
ulus N. Deduce that Eve can decrypt any RSA ciphertext encrypted using the
modulus N intended for Alice or Bob.

Hint: Consider the sequence ¢*, g*/2, ¢*/*, ... ¢ € Zy where g is random in
Zy and 7(k) is the largest power of 2 dividing k. Use the the left most element
in this sequence which is not equal to 1 in Zy.

k/4 k/7(K)

Problem 2. Time-space tradeoff. Let f : X — X be a one-way permutation. Show that
one can build a table T of size B bytes (B < |X|) that enables an attacker to invert f in
time O(]X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm
A that takes as input the table T" and a y € X, and outputs an x € X satisfying
f(x) = y. This result suggests that the more memory the attacker has, the easier it
becomes to invert functions.

Hint: Pick a random point z € X and compute the sequence

200=2, 21:=[f(2), 2= [f(f(2), 2z:=[(f(f(2))),

Since f is a permutation, this sequence must come back to z at some point (i.e. there
exists some j > 0 such that z; = z). We call the resulting sequence (zo, 21, ..., 2;) an
f-cycle. Let t := [|X|/B]. Try storing (z, 2t, z2t, 25t, - - .) in memory. Use this table
(or perhaps, several such tables) to invert an input y € X in time O(t).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value . At a later time Alice may open the commitment
and convince Bob that the committed value is . The commitment is binding if Alice
cannot convince Bob that the committed value is some 2’ # z. Here is an example
commitment scheme:



Public values: (1) a 1024 bit prime p, and (2) two elements g and & of Z of prime
order q.

Commitment: To commit to an integer = € [0,q — 1] Alice does the following: (1)
she picks a random r € [0, ¢ — 1], (2) she computes b = ¢* - K" mod p, and (3) she
sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (z,7) to Bob. Bob verifies that
b= g"-h" mod p.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer z’ in
[0,q —1]. o
Hint: show that for any «’ there exists a unique " € [0,q — 1] so that b= g h".

b. To prove the binding property show that if Alice can open the commitment as
(', 7") where x # 2’ then Alice can compute the discrete log of h base ¢g. In other
words, show that if Alice can find an (2/,7’) such that b = g A” mod p then she
can find the discrete log of h base g. Recall that Alice also knows the (z,r) used
to create b.

Problem 4. In class we showed a collision resistant hash function from the discrete-log
problem. Here let’s do the same, but from the RSA problem. Let n be a random
RSA modulus, e a prime relatively prime to ¢(n), and u random in Z*. Show that the
function

Hyue:Zy, x{0,....,e =1} = Z; defined by Hyyelz,y) =20 €Z,

is collision resistant assuming that taking e’th roots modulo n is hard.

Suppose A is an algorithm that takes n, u as input and outputs a collision for H,, , (-, -).
Your goal is to construct an algorithm B for computing e’th roots modulo n.

a. Your algorithm B takes random n,u as input and should output u!'/¢. First, show
how to use A to construct a € Z, and b € Z such that a® = u® and 0 # |b| < e.

b. Clearly a'/® is an e’th root of u (since (a'/*)¢ = u), but unfortunately for B, it
cannot compute roots in Z,. Nevertheless, show how B can compute a'/®. This
will complete your description of algorithm B and prove that a collision finder can
be used to compute e’th roots in Z.

Hint: since e is prime and 0 # [b| < e we know that b and e are relatively prime.
Hence, there are integers s,t so that bs+et = 1. Use a,u, s,t to find the e’th root
of w.

c. Show that if we extend the domain of the function to Z¥ x {0,...,e} then the
function is no longer collision resistant.



Problem 5 Recall that a simple RSA signature S = H(M)% mod N is computed by first
computing S; = H(M)? mod p and Sy = H(M )¢ mod q. The signature S is then found
by combining S; and S, using the Chinese Remainder Theorem (CRT). Now, suppose
a Certificate Authority (CA) is about to sign a certain certificate C'. While the CA
is computing S; = H(C)? mod p, a glitch on the CA’s machine causes it to produce
the wrong value S; which is not equal to S;. The CA computes Sy = H(C)?mod q
correctly. Clearly the resulting signature S is invalid. The CA then proceeds to publish
the newly generated certificate with the invalid signature S.

a. Show that any person who obtains the certificate C' along with the invalid signature
S is able to factor the CA’s modulus.
Hint: Use the fact that S¢ = H(C)mod g. Here e is the public verification
exponent.

b. Suggest some method by which the CA can defend itself against this danger.

Problem 6. Access control and file sharing using RSA. In this problem N = pq is some
RSA modulus. All arithmetic operations are done modulo V.

a. Suppose we have a file system containing n files. Let ey, ..., e, be relatively prime
integers that are also relatively prime to ¢(N), i.e. ged(e;, ej) = ged(e;, p(N)) =1
for all i # j. The integers eq,...,e, are public. Choose a random r € Z3 and

suppose each file Fj is encrypted using the key key; := r'/¢.

Now, let S, € {1,...,n} and set b = [[,.g e;. Suppose user u is given K, = /e,

Show that user v can decrypt any file ¢ € S,,. That is, show how user v using K,
can compute any key key, for i € S,,.

With this mechanisn, every user u; can be given a key K, enabling it to access
exactly those files to which it has access permission.

b. Next we need to show that user u, who has K,, cannot construct a key key, for
i ¢ S,. To do so we first consider a simpler problem. Let di,ds be two integers
relatively prime to ¢(/N) and relatively prime to each other. Suppose there is an
efficient algorithm A such that A(r,7'/%) = /42 for all r € Z%. In other words,
given the d;’th root of r € Z}, algorithm A is able to compute the dy’th root of r.
Show that there is an efficient algorithm B to compute dy’th roots in Z3,. That
is, B(z) = z'/% for all x € Z%,. Algorithm B uses A as a subroutine.

c. Show using part (b) that user u cannot obtain the key key, for any i ¢ S, assuming
that computing e’th roots modulo NV is hard for any e such that ged(e, o(N)) = 1.
(the contra-positive of this statement should follow from (b) directly).



