Assignment #3

Due: Monday, Mar. 12, 2012. (in class)

Problem 1 Let's explore why in the RSA public key system each person has to be assigned a different modulus N = pq. Suppose we try to use the same modulus N = pq for everyone. Each person is assigned a public exponent e_i and a private exponent d_i such that $e_i \cdot d_i = 1 \mod \varphi(N)$. At first this appears to work fine: to encrypt a message to Bob, Alice computes $c = m^{e_{\text{bob}}}$ and sends c to Bob. An eavesdropper Eve, not knowing d_{bob} appears to be unable to decrypt c. Let's show that using e_{eve} and d_{eve} Eve can very easily decrypt c.

- **a.** Show that given e_{eve} and d_{eve} Eve can obtain a multiple of $\varphi(N)$.
- **b.** Show that given an integer k which is a multiple of $\varphi(N)$ Eve can factor the modulus N. Deduce that Eve can decrypt any RSA ciphertext encrypted using the modulus N intended for Alice or Bob.

Hint: Consider the sequence $g^k, g^{k/2}, g^{k/4}, \dots g^{k/\tau(K)} \in \mathbb{Z}_N$ where g is random in \mathbb{Z}_N and $\tau(k)$ is the largest power of 2 dividing k. Use the left most element in this sequence which is not equal to ± 1 in \mathbb{Z}_N .

Problem 2. Time-space tradeoff. Let $f: X \to X$ be a one-way permutation. Show that one can build a table T of size B bytes $(B \ll |X|)$ that enables an attacker to invert f in time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm \mathcal{A} that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying f(x) = y. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z, \quad z_1 := f(z), \quad z_2 := f(f(z)), \quad z_3 := f(f(f(z))), \quad \dots$$

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some j > 0 such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time O(t).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value x to Bob. The scheme is *secure* if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may *open* the commitment and convince Bob that the committed value is x. The commitment is *binding* if Alice cannot convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:

- **Public values:** (1) a 1024 bit prime p, and (2) two elements g and h of \mathbb{Z}_p^* of prime order q.
- **Commitment:** To commit to an integer $x \in [0, q 1]$ Alice does the following: (1) she picks a random $r \in [0, q 1]$, (2) she computes $b = g^x \cdot h^r \mod p$, and (3) she sends b to Bob as her commitment to x.
- **Open:** To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b = g^x \cdot h^r \mod p$.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In other words, show that given b, the committed value can be any integer x' in [0, q-1].

Hint: show that for any x' there exists a unique $r' \in [0, q-1]$ so that $b = g^{x'}h^{r'}$.

- **b.** To prove the binding property show that if Alice can open the commitment as (x', r') where $x \neq x'$ then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x', r') such that $b = g^{x'}h^{r'}$ mod p then she can find the discrete log of h base g. Recall that Alice also knows the (x, r) used to create b.
- **Problem 4.** In class we showed a collision resistant hash function from the discrete-log problem. Here let's do the same, but from the RSA problem. Let n be a random RSA modulus, e a prime relatively prime to $\varphi(n)$, and u random in \mathbb{Z}_n^* . Show that the function

$$H_{n,u,e}: \mathbb{Z}_n^* \times \{0,\dots,e-1\} \to \mathbb{Z}_n^*$$
 defined by $H_{n,u,e}(x,y) := x^e u^y \in \mathbb{Z}_n$

is collision resistant assuming that taking e'th roots modulo n is hard.

Suppose \mathcal{A} is an algorithm that takes n, u as input and outputs a collision for $H_{n,u,e}(\cdot,\cdot)$. Your goal is to construct an algorithm \mathcal{B} for computing e'th roots modulo n.

- **a.** Your algorithm \mathcal{B} takes random n, u as input and should output $u^{1/e}$. First, show how to use \mathcal{A} to construct $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}$ such that $a^e = u^b$ and $0 \neq |b| < e$.
- **b.** Clearly $a^{1/b}$ is an e'th root of u (since $(a^{1/b})^e = u$), but unfortunately for \mathcal{B} , it cannot compute roots in \mathbb{Z}_n . Nevertheless, show how \mathcal{B} can compute $a^{1/b}$. This will complete your description of algorithm \mathcal{B} and prove that a collision finder can be used to compute e'th roots in \mathbb{Z}_n^* .

Hint: since e is prime and $0 \neq |b| < e$ we know that b and e are relatively prime. Hence, there are integers s, t so that bs + et = 1. Use a, u, s, t to find the e'th root of u.

c. Show that if we extend the domain of the function to $\mathbb{Z}_n^* \times \{0, \dots, e\}$ then the function is no longer collision resistant.

- **Problem 5** Recall that a simple RSA signature $S = H(M)^d \mod N$ is computed by first computing $S_1 = H(M)^d \mod p$ and $S_2 = H(M)^d \mod q$. The signature S is then found by combining S_1 and S_2 using the Chinese Remainder Theorem (CRT). Now, suppose a Certificate Authority (CA) is about to sign a certain certificate C. While the CA is computing $S_1 = H(C)^d \mod p$, a glitch on the CA's machine causes it to produce the wrong value \tilde{S}_1 which is not equal to S_1 . The CA computes $S_2 = H(C)^d \mod q$ correctly. Clearly the resulting signature \tilde{S} is invalid. The CA then proceeds to publish the newly generated certificate with the invalid signature \tilde{S} .
 - a. Show that any person who obtains the certificate C along with the invalid signature \tilde{S} is able to factor the CA's modulus. Hint: Use the fact that $\tilde{S}^e = H(C) \mod q$. Here e is the public verification exponent.
 - **b.** Suggest some method by which the CA can defend itself against this danger.
- **Problem 6.** Access control and file sharing using RSA. In this problem N = pq is some RSA modulus. All arithmetic operations are done modulo N.
 - **a.** Suppose we have a file system containing n files. Let e_1, \ldots, e_n be relatively prime integers that are also relatively prime to $\varphi(N)$, i.e. $\gcd(e_i, e_j) = \gcd(e_i, \varphi(N)) = 1$ for all $i \neq j$. The integers e_1, \ldots, e_n are public. Choose a random $r \in \mathbb{Z}_N^*$ and suppose each file F_i is encrypted using the key $\ker_i := r^{1/e_i}$.
 - Now, let $S_u \subseteq \{1, ..., n\}$ and set $b = \prod_{i \in S_u} e_i$. Suppose user u is given $K_u = r^{1/b}$. Show that user u can decrypt any file $i \in S_u$. That is, show how user u using K_u can compute any key key_i for $i \in S_u$.
 - With this mechanism, every user u_j can be given a key K_{u_j} enabling it to access exactly those files to which it has access permission.
 - **b.** Next we need to show that user u, who has K_u , cannot construct a key $\ker_i \in S_u$. To do so we first consider a simpler problem. Let d_1, d_2 be two integers relatively prime to $\varphi(N)$ and relatively prime to each other. Suppose there is an efficient algorithm \mathcal{A} such that $\mathcal{A}(r, r^{1/d_1}) = r^{1/d_2}$ for all $r \in \mathbb{Z}_N^*$. In other words, given the d_1 'th root of $r \in \mathbb{Z}_N^*$ algorithm \mathcal{A} is able to compute the d_2 'th root of r. Show that there is an efficient algorithm \mathcal{B} to compute d_2 'th roots in \mathbb{Z}_N^* . That is, $\mathcal{B}(x) = x^{1/d_2}$ for all $x \in \mathbb{Z}_N^*$. Algorithm \mathcal{B} uses \mathcal{A} as a subroutine.
 - c. Show using part (b) that user u cannot obtain the key \ker_i for any $i \notin S_u$ assuming that computing e'th roots modulo N is hard for any e such that $\gcd(e, \varphi(N)) = 1$. (the contra-positive of this statement should follow from (b) directly).