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ABSTRACT
This paper introduces DIDUCE, a practical and effective
tool that aids programmers in detecting complex program
errors and identifying their root causes. By instrumenting a
program and observing its behavior as it runs, DIDUCE
dynamically formulates hypotheses of invariants obeyed by
the program. DIDUCE hypothesizes the strictest invariants
at the beginning, and gradually relaxes the hypothesis as
violations are detected to allow for new behavior. The
violations reported help users to catch software bugs as soon
as they occur. They also give programmers new visibility into
the behavior of the programs such as identifying rare corner
cases in the program logic or even locating hidden errors
that corrupt the program’s results.

We implemented the DIDUCE system for Java programs
and applied it to four programs of significant size and
complexity. DIDUCE succeeded in identifying the root causes
of programming errors in each of the programs quickly and
automatically. In particular, DIDUCE is effective in isolating
a timing−dependent bug in a released JSSE (Java Secure
Socket Extension) library, which would have taken an
experienced programmer days to find. Our experience
suggests that detecting and checking program invariants
dynamically is a simple and effective methodology for
debugging many different kinds of program errors across a
wide variety of application domains.

1. INTRODUCTION
While rapid advances in computing hardware have led to

powerful, multi−gigahertz processors, advances in software
reliability have not kept pace with this progress. Software
program bugs continue to be frequent, in spite of increasing
requirements that software be reliable. Non−stop systems have
stringent uptime requirements and must be kept running even in
the face of hardware or software errors and may be required to
be monitored, debugged and patched on the fly. While software

program crashes are problematic enough, perhaps more
dangerous are undetected errors which silently compromise the
results of a computation. For example, it is difficult to verify the
results of a software simulation of a system, since the purpose of
simulation is to predict the behavior of the system without
having to build it. The use of incorrect intermediate results due
to undetected bugs has been known to lead to catastrophes in
mission−critical or even safety−critical situations [9][12]. All
this calls for a much deeper understanding of what happens
inside a software program than the conventional visibility
offered by the outputs of a program.

The challenge of building reliable software is compounded
in real life by the fact that programmers often do not take the
time to write detailed specifications or documentation. As a
result, software documentation is frequently incomplete or out
of date. In addition, complex software systems are so large that
one person rarely has knowledge about all parts of the system.
Quite often, software systems are assembled using multiple
components, which may have been developed by different
groups of people, perhaps in different organizations, using
different development and testing methodologies. Bugs in such
systems, especially those which arise only in rare corner cases,
can take days or weeks to debug. It is thus desirable to have
automated debugging methods which utilize the vast power of
machines available today to reduce human debugging time.

We tackle the problems of both detecting bugs and hunting
down the root causes of bugs using the concept of dynamic
invariant detection and checking. Most programs obey many
invariants, many of which are not documented anywhere, and in
fact, may not be known even to the original writers of the code.
Explicitly specifying known program invariants, usually with
the goal of documenting the programs, or of checking the
invariants dynamically or statically [4][5][6] is a tedious task. In
addition, manual specification of invariants tends to capture
only a few abstract, high−level invariants and a few
implementation−specific, low−level invariants at key program
points, usually reflecting the parts of the program that
programmers tend to think and worry about the most.

In contrast to static specification, we can automatically
detect likely program invariants based on dynamic program
behavior (also called "dynamic invariants" in this paper) [8].
The Daikon tool, developed by Ernst et al., detects dynamic
invariants by starting with a specific space of possible program
invariants. It runs the program on a large set of test inputs, and
infers likely invariants by ruling out those which are not
violated during any of the program runs. This approach has the
advantage of being automatic and pervasive, unlike static
specification, but is limited by the fixed set of invariants
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hypothesized and checked for. Dynamic invariant detection is
also constrained by the quality of test inputs available.

This paper introduces a new tool we have developed, called
DIDUCE (Dynamic Invariant Detection∪ Checking Engine).
Like Daikon, DIDUCE tries to extract invariants dynamically
from program executions. However, instead of presenting the
user with numerous invariants found after a program’s
execution, DIDUCE continually checks the program’s behavior
against the invariants hypothesized up to that point in the
program’s run(s) and reports all detected violations. When a
dynamic invariant violation is detected, the invariant is relaxed
to allow for the new behavior and program execution is
resumed. This results in a fully automatic tool that checks a
program against a model it creates without requiring any human
intervention. The ability to detect program anomalies has many
interesting applications. For example, it allows the user to ask
DIDUCE "what’s new?" just before a program crashes, and the
answer often points to the source of the error. Anomalies, or
invariant relaxations, are ranked according to a statistical
confidence level to help users quickly locate the largest
deviations from previous behavior.

By focusing on the anomalies in a program’s execution,
DIDUCE provides uncluttered visibility into the noteworthy part
of a program’s behavior. Note that the deviations reported may
not necessarily cause an error or result from an error. However,
knowing certain execution scenarios to be rare may itself be
insightful for the user. In practice, we found that users were
genuinely interested in knowing what these corner cases were.
They liked how DIDUCE gave them a better feel for what their
program was doing. 

In the presence of a software error, dynamic invariant
violations may point to the first consequence of the bug or may
identify the unique context under which the bug takes place. For
example, DIDUCE may detect a change in the input pattern that
subsequently triggers a bug. While DIDUCE cannot track down
all possible bugs, its value lies in the fact that when it does so, it
can often detect a bug at its source, which can be very far away
from where the bug actually manifests itself (if indeed it ever
does.) Even for users debugging program execution backwards
from a point of failure, invariant violations often leave an
interesting trail of anomalous events, which the users can work
backwards through.

For a debugging tool to be useful, it must be efficient and
easy to use. The tool must be able to handle large programs. As
we shall see in the results of our experiments, many useful
invariants are serendipitous in nature, and it is important that
invariant detection be pervasive enough to catch all such
violations.

The main contributions of this paper are as follows.
1. This paper introduces the concept of dynamic invariant

detection and checking as a means to aid programmers
in finding the root causes of software bugs. This
technique is especially valuable for debugging complex
algorithmic errors. The information is also useful in
helping programmers understand their software better.

2. We have implemented this concept in a tool called
DIDUCE that works with Java bytecodes. To handle
large programs, DIDUCE keeps track of relatively
simple program invariants. We have developed a
succinct representation to capture important invariants.
DIDUCE instrumentation is modular, allowing parts of
the software to be instrumented, one at a time. While
DIDUCE has reasonable defaults that make it easy for
novices to use, it is also extensible, allowing

sophisticated users to tailor it to a particular
application. DIDUCE has a GUI interface which allows
users to easily navigate through the invariant violations
detected and correlate the violations with the source
code, if it is available.

3. We have applied DIDUCE to four real−life Java
programs of significant size and complexity, and the
tool succeeded in identifying the root causes of
programming errors in each of the programs quickly
and automatically. In particular, we used DIDUCE to
effectively isolate a timing−dependent bug in a
released Java Secure Sockets Extension library which
would have taken an experienced programmer more
than a couple of days to find. Our experience suggests
that detecting and checking program invariants
dynamically is a simple and effective methodology for
debugging many different kinds of program errors
across a wide variety of application domains.

The rest of this paper is organized as follows. Section 2
describes some possible usage models for a tool like DIDUCE.
Section 3 discusses what invariants can be tracked by DIDUCE,
and their representation. Section 4 describes the implementation
details of DIDUCE. Section 5 describes how we used DIDUCE
to find bugs in four large Java programs. Section 6 compares
DIDUCE with related work. Finally, Section 7 concludes and
presents some ideas for future work.

2. Usage Models for DIDUCE
Dynamic invariant detection has been proposed in the past

as a way to extract invariants automatically from programs [8].
These invariants help programmers understand the program and
can also be fed to a static checker as hypotheses to be proved or
disproved [15]. By turning this concept into an online system
that also checks for violations, we have created a tool with wide
applicability in the software development process. While this
paper focuses on the use of this concept in debugging, it is also
useful for program testing and is helpful in evolving software
correctly, as described below. 

Debugging programs that fail on some inputs: It is a
common occurrence for a program which works correctly on
many inputs, to fail on others. DIDUCE can be used to quickly
pinpoint differences in behavior between the successful and the
failing runs. For example, DIDUCE could be used to
automatically provide debug information upon detection of
regressions in a test suite, by first extracting invariants from test
cases that pass, and checking for invariant violations on the
failing cases. The list of invariant violations can then be
presented along with the failing tests to a human test engineer or
developer to reduce debugging time.

Debugging failures in long−running programs: Some of
the hardest bugs to track down are those that occur only after a
program has executed for a long time. Typically, a developer
would guess what the problem is and try to gain visibility on the
suspect variables or code segments by adding debugging
statements, assertions, and breakpoints into the program. This
trial−and−error process can be time consuming for long−running
programs. Moreover, a developer’s intuitions may not
necessarily be dependable especially if the errors are caused by
his own misconceptions in the first place. DIDUCE blindly and
continually monitors all the variables in the program and is
better suited to locating such errors. For long running programs,
a training set may not even be necessary. Assuming there are no
bugs in the early part of the run, DIDUCE can flag anomalous
behavior in the later parts of the run.



Debugging component−based software:DIDUCE can be
used in the bring−up of a component−based system. Normally, a
program must run correctly on some inputs, or for some
duration, before DIDUCE can successfully extract meaningful
invariants for the program. For component−based software,
however, we can first train DIDUCE on other codes that use the
same components correctly, and apply it to check the behavior
of the component in the context of the new software.

Testing programs with inputs for which the correct
outputs are unknown: Producing test cases for a program can
be quite tedious because the expected results must also be
prepared for comparison with the program’s output. Assuming
there are some tests for which the results are known, we first
train DIDUCE on these tests, and use the invariants gathered to
check the runs on inputs with no known outputs. With this
approach, it is possible to test software with, say, pseudo−
random inputs for which no answers are known a priori.
Invariant violations detected indicate bugs in the program, or at
least expose corner cases which did not occur during directed
testing.

Assisting in program evolution: Another use for DIDUCE
is to check if modifications to a part of the program
unexpectedly alter the behavior of other parts. We can simply
check the invariants collected before the update from the
unmodified parts of the program on program runs after the
update. This is especially useful in assisting new programmers,
who may not understand all parts of the system, to ensure that
changes they make do not break invariant assumptions in the
rest of the software.

3. DIDUCE INVARIANTS
DIDUCE is an on−line invariant detector and checker for

Java programs. The system instruments the user’s program and
maintains invariants on the values of a set oftracked
expressionsat various program points. For each tracked
expression, DIDUCE maintains an invariant hypothesis that is
satisfied by all the values that have occurred in the history of the
execution so far. If an expression is found to evaluate a value
that does not conform to its current invariant hypothesis,
DIDUCE relaxes the invariant to allow for the new value.

DIDUCE operates in one of two modes: the training mode
and the checking mode. The only difference between these two
modes is that in the training mode, DIDUCE silently learns
invariants by relaxing invariant hypotheses as needed; in
checking mode, DIDUCE emits messages about invariant
relaxations which occur along the way. Training continues in the
checking mode as well. DIDUCE will therefore warn about a
value which violates a presumed invariant only the first time
that it is encountered; the invariant is thereafter relaxed to
silently allow that value. Of course, code which gets executed
for the first time is treated as a special kind of invariant
violation.

The rest of this section describes which program points are
instrumented, what expressions are tracked, how invariants are
internally represented, and the notion of invariant confidence.

3.1 Instrumented Program Points
DIDUCE associates invariants with static program points,

i.e. specific locations in the program’s code. Instrumentation
code is introduced at these program points to evaluate the values
of a set of tracked expressions, to report any invariant
violations, and to update the dynamic invariant according to the
new value. DIDUCE instrumentation works directly on Java
bytecodes and does not need access to source code.

DIDUCE allows tracked expressions to be attached to the
following categories of program points:

1. program points which read from or write to objects
(including arrays),

2. program points which read from or write to a static
variable, and 

3. procedure call sites
This design gives the user visibility into the global state of

the computation, as captured by the contents of objects and
procedure interfaces. We leave out stack accesses as they are
time−consuming to track and are less interesting, especially
since all Java objects are allocated on the heap.

Ordinarily the user supplies DIDUCE with a list of class
files or JAR (Java Archive) files associated with the program,
excluding the standard Java libraries. By default, DIDUCE will
instrument all the static program points described above in those
classes. This is the recommended mode of operation, especially
for a user who knows verylittle about the program being
debugged. DIDUCE also allows the user finer−grained control
over the instrumentation. Users can restrict the instrumentation
to certain classes, methods, fields accessed, types of accesses
(read or write of a static field, or an object, or an array), line
numbers (provided line number information is present in the
class file), and specific parameters or return values in calls at
specific call sites. This feature not only reduces run−time
overhead by omitting instrumentation of program points of no
interest, but also eliminates noise generated from uninteresting
points in the program.

DIDUCE does not allow the user to qualify the tracked
expressions dynamically. While such a feature may allow a user
to, for example, track an expression only if executed by a
particular thread or, under a particular calling context, this
option would have increased the dynamic execution overhead
per tracked expression. In contrast, our simple, static approach
of selecting instrumentation points is time and space efficient.
The storage overhead is proportional to the number of invariants
tracked, which in turn is proportional to the static size of the
program. The technique is modular in that each program point
can be instrumented without regard to which other program
points are chosen for instrumentation. Thus, parallelism can be
used easily to speed up the analysis. We routinely generate
different versions of the program being debugged by
instrumenting different parts of the code, and run these versions
in parallel on different machines.

3.2 Tracked Expressions
For each instrumented program point, DIDUCE derives

invariants that are obeyed by all the objects/variables accessed
at that program point. As discussed above, these are either (1)
objects read or written, (2) static variables read or written, or (3)
input parameters or return values, depending on the program
point.

Specifically, DIDUCE associates with each program point a
set of expressions, each of which is a function of the object or
variable being accessed. DIDUCE maintains an invariant for
each expression in this set, starting with the strictest invariant
assumption at the beginning and gradually relaxing it to
encompass the values observed for the expressions. The
relaxation rules are based on the type of the expression, which
can be one of boolean, byte, short, char, integer, long or
reference. We currently ignore all values of floating point data
types, since invariants on them tend not to be meaningful with
our default representation. Details on the representation of the
invariants and their relaxation rules are given in Section 3.3.



DIDUCE tracks the following expressions for each program
point by default: 
� the value being read or written
� the parent object, in the case where a field of an object is

accessed (except for arrays.) 
� the difference between the values of the location

accessed before and after a write operation. For data of a
numeric type, this difference is simply their numeric
difference. As a useful side−effect, this expression also
tracks if the written field changes monotonically with
respect to this program point. If the data is of reference
type, the difference is a boolean value indicating whether
the run−time type of the new value matches the old.
Fig. 1 illustrates a few examples of tracked invariants at

different kinds of program points. For tracked expressions which
are of reference type, it does not make sense to capture the value
of the object; we therefore map objects to their run−time types
instead. Invariant violations on such expressions try to catch
scenarios where new run−time types are observed for that
program point. Null values are treated as a special run−time type
of their own.

While we consider the set of default invariants described
above to be generally useful in practice, invariants can be
specialized for a particular program or domain. Users can do so
by extending one of the classes in the DIDUCE run−time
library. Users can omit from the default set those invariants
considered not useful for their application. For example, users
may not want to track invariants on run−time types when there
is no polymorphism in the program. Users may also specify
their own set of expressions to be tracked for different
categories of program points. The tracked expression has to be a
function of the parent object being accessed (for object reads or
writes), the value of the field being read or written, and (for
writes) the old value of the location being written. For example,
a tracked expression can use the parent object reference to
compute properties like the array length at array access points,
or it can compute a function of multiple fields in the object.
Users can also specify that DIDUCE should treat invariants on
the tracked expressions at different program points as belonging
to the same program point. This is useful, for example, when

users would like to maintain invariants on a particular property
regardless of the location in the program code.

3.3 Invariant Representation
To keep the time and space overhead low, it is important

that DIDUCE invariants be represented compactly and be easy
to compute and update. For example, it would be too expensive
to keep track of all the values seen for each tracked expression;
nor would this necessarily be useful because over−learning may
result in generating too many invariant violations.

For each instrumented program point, DIDUCE keeps track
of the number of times that program point is executed, and
maintains an invariant for each of the expressions tracked. We
describe below the default procedure, which can also be over−
ridden by the user if so desired.

First, DIDUCE reduces the values of all expressions, which
may be of type boolean, byte, char, short, int, and long, to
integers. Tracked expressions of reference type are mapped to
an integer by computing thehashcodeof the String object
representing the name of the run−time type. Hashcode is a
function in the standard Java library, which when applied to a
string, will always return the same hash code across all runs of
the program. This is important because we wish to carry over
invariants derived from one program run to other runs. Null
objects map to a hashcode value of 0. This mapping is relatively
quick to compute, requiring 3−4 memory references on most
systems.

For each expression, whose values are now all integers, the
invariant maintains for each bit position (1) the value of that bit
the first time the expression was evaluated, and (2) whether
different values have been observed for that bit position. A
violation is reported if differences between the new value and
previous ones are observed in new bit positions.

Specifically, we associate with each expression a tuple of
two integers, an initial valueV and a maskM. The ith bit in M is
set to 1 iff the same bit value has always been observed for that
position. Suppose the first value of an expression is W, then 

M := ¬ 0, V := W. 
Suppose, subsequently, the expression returns W’, if 

(W’ ⊗ V ) ∧ M ≠ 0,

Fig. 1: Some Examples of Tracked Expressions

Class SomeClass {

 static int x;

 int y;

 ...

}

  Object o = new SomeClass();

   Object arr[] = new SomeClass[3];

   ...

  // static field write

    SomeClass.x = ...

  // object field read    

    ... = o.y;

  // object array write

    arr[i] = ...

    

  // procedure call

    foo (SomeClass.x+1, o);

SomeClass.x

SomeClass.x' -  SomeClass.x

o.y

o

arr[i]

T(arr[i]') == T(arr[i])

 SomeClass.x+1

 o

 return value of foo

For writes, the variable name (e.g. o.x) refers to its value before the write, 
while the name with a ’ suffix (e.g. o.x’) refers to its value after the write.
T(o) refers to the runtime type of object o.

Source code Tracked Expressions



where⊗ is the "xor" operator, a violation is reported, and the
invariant is relaxed by:

M := M ∧ ¬ (W’ ⊗ V)
Thus, checking and updating invariants for each tracked
expression are efficient in both space and time.

This succinct representation keeps track of some interesting
properties about the values observed for an expression. For
example, it can tell if an expression evaluates to the same value
all the time. For numerical expressions, the invariants keep track
of (1) whether the values were only positive or only negative,
only odd or only even, (2) an approximate upper bound on the
value, and (3) which of the bits have constant values. To
simplify implementation, we currently employ the same
representation for expressions of reference type as well.
DIDUCE can therefore detect whether the same run−time type is
encountered at that program point all thetime. In our
experiences, we found that a good use of the reference type
invariants was to distinguish between null and non−null values.

With this representation, the number of violations detected
for each expression can be no greater than the number of bits in
a word. It also has the desirable property that if the values of an
expression increase monotonically by a constant amount (such
as a counter counting upwards), the frequency of violations
decreases exponentially.

In summary, the storage required for maintaining invariants
is about three words per tracked expression (one to store the
number of times the program point is executed and two to store
the invariant). The run−time overhead is limited to a few
memory operations and a few simple logical operations per
instrumentation point.

3.4 Invariant confidence
We introduce the notion ofconfidence on invariant

hypotheses to help users prioritize among invariant violations,
which can be quite numerous, especially at the beginning of a
program run. Roughly speaking, we have high confidence in an

invariant hypothesis if the expression has been evaluated many
times and there is little variation in the values observed. The
confidence level of an invariant is therefore defined as the ratio
between the number of times the expression has been evaluated
and the number of values the invariant accepts. The number of
values accepted is simply 2n, wheren is the number of 0s in the
mask vector of the corresponding invariant. This simple metric
works quite well from our experience, as it strongly biases the
confidence towards expressions which take on only one value,
or a few values which are close together.

Every invariant violation is reported with the change in
confidence levels between the old invariant and the newly
relaxed invariant. A large drop in confidence signals a
noteworthy invariant violation. Since this measure of change in
confidence is not meaningful in the case of invariants on run−
time types (which are highly sensitive to the type names and
hashcode encoding scheme used), we report a fixed, user−
specifiable confidence level whenever a violation on a run−time
type is detected. Similarly, code executed for the first time is
reported with a fixed, user−specifiable invariant confidence
change.

4. DIDUCE IMPLEMENTATION
Our goal is to make the DIDUCE system as easy to use as

possible. Using DIDUCE only involves inserting two additional
steps before running the program. The user first specifies a list
of class files, optionally with a specification of which categories
of program points to instrument, as described in Section 3.1.
The instrumented class files go into a DIDUCE JAR file; the
user inserts this JAR file at the head of the classpath and then
runs the program as usual. Internally, in the instrumentation
step, we use the ByteCode Engineering Library (BCEL) [3] to
instrument Java class files and insert calls to the DIDUCE run
time system at appropriate program points.

Since DIDUCE instruments legal and verifiable Java class
files, source code is not required at the instrumentation step.

Fig. 2: Screenshot of DIDUCE GUI reporting invariant violations



Adding instrumentation to a class file can potentially cause the
class to exceed static class file limits [13]; however, we have not
found this to be a problem on any real−life programs. Apart
from this possibility, the instrumented versions of the classes
generated by DIDUCE are completely legal and verifiable Java
class files and can be run on any compliant Java Virtual
Machine. While access to source code is not required for
instrumentation, it is, of course, useful for understanding the
invariant violations reported.

To allow aggregation of invariants across different program
runs, users can optionally save the set of learned invariants to a
file, and initialize invariants at the beginning of a run from the
saved file. Users can also specify whether DIDUCE is to be run
in training mode or checking mode. As stated earlier, the only
difference between these modes is that DIDUCE emits invariant
relaxation messages in the checking mode. 

As the instrumented program runs, users can tell DIDUCE
to report invariant violations only if they are above a minimum
level of confidence change. The results about invariant
violations are fed back in real time to a GUI (See Fig. 2) which
allows the user to filter invariants, sort them by confidence
change, and browse through associated source code, if it is
available. Users can also browse through detected invariants at
the end of a run.

DIDUCE invariant detection and checking is safe in a
multithreaded environment. An online monitoring system like
DIDUCE is very useful for multithreaded programs which are
otherwise difficult to debug. Of course, since instrumenting the
program may perturb the program’s timing characteristics,
DIDUCE is only useful in these scenarios if the instrumented
program still exhibits the bug.

Thus far, we have concentrated mainly on DIDUCE
functionality, and have not put in much effort towards reducing
the run−time overhead. An instrumented program using the
default settings currently runs one to two orders of magnitude
slower. Note that the run−time instrumentation overhead only
affects the computation part of the program. DIDUCE has no
overhead on native network or I/O operations. Thus applications
which include a significant amount of network or I/O activity
may see relatively smaller overheads. As mentioned before, it is
possible to make parallel runs of the program, with different
parts instrumented.

5. DIDUCE EXPERIENCES
To evaluate the effectiveness of the DIDUCE system, we

applied it to four significantly complex Java projects. The first
program, Simulator, is a proprietary timing−accurate simulator

for a class of sophisticated memory systems being considered
for a multiprocessor−on−a−chip implementation of the MAJC
architecture [19]. The second, Mailmanage, is an open−source
email management utility, developed by a team including one of
the authors of this paper. The third is the JSSE (Java Secure
Sockets Extension) code, which has been a standard extension to
the Java library for over one and a half years. Finally, the fourth
program, Joeq, is a Java Virtual Machine system developed by
one of the graduate students in our group. Both the Mailmanage
and Joeq projects are available at the open source web site,
SourceForge. On each of these programs, we only specified the
list of classes to instrument − all other customizable parameters
such as the set of instrumented program points, tracked
expressions and invariant representation were set to the defaults
described in Section 3. Table 1 summarizes relevant parameters
for each program. We chose these programs for our experiments
because they happened to be real programs that we came across,
as we were developing DIDUCE. We have not yet tried to use
DIDUCE extensively on other programs.

In all the four examples, we found (not surprisingly) that
DIDUCE was especially helpful in pinpointing late−stage bugs
that occur after many test cases are already running. Late−stage
bugs are usually the hardest to find and take the longest to
analyze. Furthermore, no up−front investment needed to be
made by programmers in terms of specifying invariants − they
started using the tool only when they needed to debug their
programs.

5.1 MAJC Memory System Simulator
MAJC is a CPU architecture developed at Sun with support

for on−chip multiprocessing. To model future implementations
of the architecture, the processor designers were using a
simulator to evaluate various memory system designs. At the
time we applied DIDUCE to the simulator, the program was
almost fully developed and was deemed fairly stable, so much
so that its results were already being used to make architectural
design decisions. Since this was a simulator meant only to
estimate performance, it ran through pre−generated program
traces without actually executing the simulated program. The
simulator’s output was the number of clock cycles taken to
execute the entire trace. Since there was no obvious way to
verify that its results were correct, the programmer had laced it
liberally with assertion checks throughout the code.

We instrumented each of the ten important classes in the
program separately, and ran the ten versions of the program in
parallel on separate machines, thus minimizing the slowdown.
We could have eliminated all the invariant checks on run−time

Program
name

Description # Lines of
Source Code

# Classes
(instrumented/total)

# Instrumented
program points

Slowdown
factor

Simulator Proprietary performance simulator
for multiprocessor memory systems 3300 10/28 3204

8−12X (Using
10 machines)

Mailmanage Open source mail management
utility

1700 (+ ~ 20000
JavaMail library)

214/214 (203 classes
in JavaMail library) 13014          6X

JSSE Library Shipping reference implementation
for Java Secure Sockets Layer
Library

30000 
(+ Obfuscated
RSA  libraries) 384/384 34844          8X

Joeq Research project to develop a Java
Virtual Machine 31500 18/137 3371        20X

Table 1: Details of programs DIDUCE was tried on



types, which tend to be the most expensive, on this program,
since there was no polymorphism in the program. We did not do
so because DIDUCE did not support disabling these checks as
easily at that time, and the overhead was not a significant
limitation. We set up DIDUCE to use the initial part of each
simulation run for training, and ignored the invariant violation
messages it emitted in the training phase. Typically, the number
of messages slowed to a small trickle after the first few minutes
of execution. 

We found almost all the violations detected after an hour of
instrumented execution were interesting, with the exception of
one annoying set of violations caused by a constantly increasing
counter. The confidence value associated with these false
violations was low, indicating to users that they may not be very
important. Overall, DIDUCE discovered two bugs in the
simulator that would otherwise be undetected and found the root
causes of 3 other bugs. All the bugs were serious algorithmic
errors, spread over 3 different classes which modeled different
parts of the distributed and banked cache system. Besides
identifying the 5 bugs found, the rest of the invariant violations
pointed out about 10 rare corner cases. The programmer found
these violations informative. He had to think hard to determine
if these rare cases were, in fact, manifestations of bugs in the
program. In some cases, he was surprised to learn that certain
scenarios were so rare.

Fig. 3 illustrates one of the twobugs DIDUCE found that
was not detected by any other means. This class in the simulator
models a set−associative cache. The status of each cache line
may carry the values 0, 1, or 2, to represent whether the cache
line is empty, occupied or pending, respectively. A cache line is
considered to be pending if it has been selected for replacement,
but an invalidate from another processor for the same address
reached this processor before the data could be fetched. The

status variable is usually 0 or 1. The code fragment in Fig. 3
searches, among a set of candidates, for the first location whose
status variable is 0. This is algorithmically incorrect, because
the code should find instead the first location withstatus being
either 0 or 2. The condition under which status is set to 2 is very
rare, especially at this point in the code where a cache location
is being selected to load a new memory block. The first instance
of this occurs after slightly less than an hour of uninstrumented
simulator run time. DIDUCE ran overnight on this program,
identified an invariant violation for that line in the program,
reporting thatstatus = 2 violated the current hypothesis that its
value should be either 0 or 1 at this point in the program. Upon
reviewing this report, the programmer realized immediately that
the code did not handle this rare scenario correctly. DIDUCE
helped detect another otherwise−unknown bug with similar ease.
This bug was related to a store being performed to a location in
the cache whose state was invalid, which occurred even later in
the program execution.

Apart from the two undetected errors, DIDUCE also helped
the programmer find the root causes of three other bugs which
were also detected by user−inserted assertion checks. In the first
two of these cases, an invariant relaxation reported by DIDUCE
correctly pinpointed the root cause to the exact line which
contained the bug, though they were not particularly hard for the
programmer to track down either. In the third case, the
programmer could not understand the reason for the
inconsistency reported by the assertion failure, which occurred
after about an hour of uninstrumented executiontime. He made
several unsuccessful attempts to reason about what might have
caused the assertion to fail. He tried to put in assertion checks
and breakpoints in other parts of the code to try to catch the
problem closer to its source. Each such debugging round took
over an hour but they failed to yield any results. Finally, he gave
up on the ad−hoc approach and used DIDUCE. Although
DIDUCE did not identify the precise line where the bug was
present, it identified a rare scenario through a series of six
invariant violations which occurred just before the failure. Once
the programmer found out about this scenario, he was able to
identify the culprit immediately. Some of the invariant
violations reported in this case by DIDUCE were simply about
new code executed; therefore this debugging situation would
also have been helped by a simpler tool which only reported
incremental code coverage.

    for (replaced = 0; replaced < associativity; replaced++)

    {

           // Bug -  should have checked for 0 or 2 

           if (status[replaced][curset] == 0)

break;

    }

Fig. 3: Sample code from multiprocessor simulator

Fig. 4: New code executed (Simulator)
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Fig. 5: High confidence invariant violations (Simulator)
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In Fig. 4 and Fig. 5, we plot the number of invariant
violation messages per minute of instrumented execution (for
one of the 10 runs) in 2 categories − new code executed, and
high confidence change invariant violations. These plots are
especially interesting in this example because it is a long
running program, and the early part of the program is used for
training. Space restrictions prevent us from plotting such graphs
for the rest of the examples we present. As can be seen from the
graphs, many presumed invariants are violated in the beginning
as DIDUCE tries to establish a model for the program.

In Fig. 4, the "new code" category tracks when execution
reaches a program point for the first time, for the 531 program
points instrumented in this run. Apart from these, there were a
total of 710 violations reported, of which 40 were above a
confidence change level of 100, and 83 above a change level of
10. In Fig. 5, the high confidence invariant violations refer only
to the violations above the confidence change level of 100 (these
include multiple violations for the same program point.) Since
such invariant violations typically occur for expressions which
have had a large number of evaluations and seen a small number
of values, we usually find them interesting to analyze in most
applications. Of course, lower confidence violations may also be
useful to analyze. In practice, users typically sort the invariant
violation messages and look at those with the highest confidence
changes first, regardless of their absolute values. They also look
at the last few newly instrumented program points.

The bug from Fig. 3 is represented by the last stub in Fig. 5
showing a high confidence change invariant violation about 332
minutes into execution (this violation had a confidence change
of over 1 million, which was the highest during the whole run.)
None of the other invariant violations plotted here was an actual
error, although several of them gave the programmer interesting
insights into the program run. As can be seen from these graphs,
invariant violations tend to settle down quickly, and occur in
clusters when new types of behavior are seen in the program.

Actually DIDUCE detected an invariant violation
associated with yet another bug in the program (in a different
class), even though we did not realize it at thetime. The bug
was independently discovered later. The DIDUCE warning went
unnoticed because it happened fairly early in the program
execution. The invariant violated in this case involved the
variable representing the current simulation time. The
hypothesized invariant at thetime was that its new value must
be larger than the old. DIDUCE warned of an invariant violation
as it encountered the first case where the new value was actually
smaller than the old, meaning that the simulation had moved
backwards in time! Thus, while DIDUCE is successful in
locating program errors, it is important that useful information
not be buried in with the noise in the reporting.

5.2 Mailmanage
Mailmanage is an open−source email management utility to

programmatically manipulate email mailboxes [14]. It makes
extensive use of the JavaMail library, one of the extensions to
the Java platform. While the program worked correctly on most
mailboxes, it would crash on one particular mailbox after
throwing a cryptic IO Exception. The crash apparently occurred
in the JavaMail library while trying to fetch a message from a
mailbox.

We used DIDUCE to instrument the Mailmanage program
as well as the JavaMail library (for which we did not have the
source code at the time), trained it on a few mailboxes for which
the program worked correctly, and then ran it on the failing
mailbox. DIDUCE printed out an invariant violation message,

with high confidence, just before the program entered error−
handling routines, which eventually threw the exception.

We then obtained the source code for the JavaMail library,
and looked at the program point identified by the invariant
violation. The relevant code fragment, shown in Fig. 6, is a part
of the library which parses the fetch response from the IMAP
server. The entire response is placed in thebuffer array; the
fields of the response are parsed one by one, with the variable
index always pointing to the beginning of a field within the
response. The invariant violation reported by DIDUCE said that
the variablebuffer[index] contained a new value (10) when it
was tested at the end of the while loop. The invariant established
just prior to this violation accepts both the space character and
the ")" character, which happened to denote the end of a field or
the end of the response, respectively.

The bug in this case did not reside in the Mailmanage
application and not even the JavaMail library, but the Solaris
IMAP server. The root cause of the bug was that the IMAP
server did not handle mailbox attachments created on a DOS file
system properly. The response created by the server contained
extra CR−LF characters, which caused an inconsistency with the
length it reported for the RFC822 field in the message. This
confused the JavaMail parser, which eventually threw an
exception. This bug would have been very hard to find, without
DIDUCE, for someone who had no familiarity with the inner
workings of the JavaMail library.

This case study illustrates a few of DIDUCE strengths.
First, it is able to use serendipitous invariants to identify the root
cause of an error. In this case, while the use of a space character
as a field delimiter is immaterial to the correctness of the
program, it is exploited by DIDUCE to detect an anomaly in the
input. Second, DIDUCE helps the user debug unfamiliar code,
isolating the problem down to the component which actually
contained the bug. DIDUCE correctly pinpointed the very line in
the JavaMail library where the problem showed up. Third,
DIDUCE helps find bugs in code that was not even instrumented
by finding invariant violations at the interface between
instrumented and uninstrumented domains. In this case, the root
cause of the bug was in the Solaris IMAP server, which was
implemented in a different language, running on a different
machine. However, by adding instrumentation at the interface
between the IMAP server and the JavaMail library, DIDUCE
caught the error as soon as it propagated into the library. This
effect can be used to detect errors in components which cannot
be instrumented. It also lets us trade off instrumentation
overhead against the accuracy of reporting exactly where a bug
may lie.

5.3 The Java SSE Library
The JSSE (Java Secure Sockets Extension) v. 1.0.2 library

is a mature piece of software that has been released and used for
over one and a half years. The bug that led us to study this
application was first noticed when a programmer tried to add a

    do {

           switch (buffer[index]) {

  case 'E':

       index += ENVELOPE.name.length;

      // other processing for case E

                     break;

  // similar handling of other cases

            }

    } while (buffer[index++] != ')' );

Fig. 6: Sample code from JavaMail library



proxy server to the library. She found that her changes triggered
a previously unseen failure in apparently unrelated parts of the
code. Perturbations made to the new code would exacerbate or
alleviate the problem in an unpredictable fashion. She tried to
debug this problem by working backwards from the point of
failure through the rest of the library, which she was not familiar
with. After 2 days of debugging, she had isolated the problem to
a particular function, when we asked her to try using DIDUCE
instead. She used DIDUCE to instrument the entire library and
trained it on runs where the program had worked correctly. She
then ran DIDUCE in checking mode on runs that failed. Tracing
back from the point where the exception was thrown, she
quickly found a high confidence invariant violation reported on
the return value of a call to theSocketInputStream.read method.
This part of the code is shown in Fig. 7. The return value of this
method had always been equal to 74 on the training runs, since
that was the value of the variablelen for that version of the SSL
protocol. The return value was different in the run that failed.

Focusing on this part of the code, it quickly became
apparent that the writer of this code had fallen prey to a
common Java pitfall. When theInputStream.read method is
called with a byte array argument, it is not guaranteed to fill the
array, even if the bytes are, or will eventually be, available. The
call may return after it has filled in 1 or more bytes, as long as it
returns the number of bytes actually filled in the array. The
caller is expected to check the return value and keep re−
executing the method call till the desired number of bytes have
been read. This bug existed in the currently released version of
the library, but was undiscovered because the array is in fact
filled in completely most of the time. However, adding a proxy
server to the library changed its timing and its behavior.

Once we knew about this problem, we modified DIDUCE
instrumentation to include a simple static check for immediately
discarded return values from calls to various flavors of
InputStream.read with a byte array argument. We found over 80
such examples in the Java 2 Standard Edition and Enterprise
Edition v1.3 libraries, most of which are likely to be errors.

This case study illustrates the importance of automatic
invariant discovery. Having a fundamental misunderstanding of
the java.io library interface, the original developer would not
have placed an assertion on the return value. Had he thought that
the check was needed, he would probably not have made the
error in the first place.

5.4 Joeq
Joeq [11] is a large project which implements a Java

Virtual Machine system with a just−in−time compiler. We
instrumented the Joeq classes and ran the initial part of the
virtual machine boot−up sequence in which the Java compiler
system compiles itself. We ran DIDUCE in checking mode,
without any training, and ignored the initial invariant violation
messages.

Joeq failed an assertion while compiling a particular
version of the Java Runtime Library. Joeq read each entry in the
library JAR file, processed it, and entered the name of the entry
into its own hash table. The assertion failure was caused by the
fact that at the end of processing the file, the number of entries
reported by the JAR file object did not match the number of
entries it had in its own hash table. Whereas the assertion caught
the fact that an error has occurred, DIDUCE pointed the
programmer to the source of the problem precisely. The relevant
code excerpt is shown in Fig. 8. As it turns out, the return value
of the Hashtable.put method provides an indication of whether
the object being inserted is already present in the hash table. It
returns the existing object if the key matches an element in the
hash table, and NULL otherwise. The programmer implicitly
assumed that the entries in a JAR file were unique, and ignored
the return value of the method. However, DIDUCE reported a
warning when a duplicate was first encountered because the
return value was not null for the first time. The failure had been
caused by the fact that the library JAR file had duplicate entries
for a particular file.

This example again corroborates the observation that there
are usually plenty of clues that point to the source of the
problem. Had the programmer not checked the number of
entries in the hash table with an assertion, it would have been
even harder to debug manually. 

5.5 Summary Remarks
We applied DIDUCE to four very different applications, and it
has been proven useful in every case we tried. It even
discovered two errors in Simulator which would have gone
detected otherwise. It helped find the root causes of many
different kinds of errors.

� As illustrated by the Simulator case study, DIDUCE
helps locate algorithmic errors that fail to handle corner
cases correctly. As DIDUCE isolates the context in
which an error occurs, the programmer can analyze the
problematic scenario better and zoom in to the problem
easily.

� As illustrated by the MailManage and Joeq case
studies, DIDUCE helps user find errors in inputs,
unfamiliar codes, and even uninstrumented
components. The latter is achieved by noting violations
of invariants governing the interface to uninstrumented
domains.

� As illustrated by the SSL Library case study, DIDUCE
helps identify errors due to a misunderstanding of
interfaces between modules of a program. Programmers
can quickly identify errors when presented with
unexpected values observed at the interfaces.

 
  JarInputStream in = ...;

  Hashtable names = new Hashtable()...;

  for (<each entry in the jar file> ) {

     JarEntry je = jin.getNextJarEntry();

     // process entry  ...

     names.put (je.getName());

   }
   assert (names.size() == jfile.size());

Fig. 8: Excerpt from joeq

  InputStream  s = x; // x is instance of SocketInputStream

 // .. various SSL protocol processing  

  if (...) {
      int len = ... // expression for  length of header,

                         // always 74 at this program point

      byte[] hdr = new  byte[len];

      s.read (hdr); 
  }

Fig. 7: Excerpt from the SSL library



� As illustrated by the Mailmanage and Joeq case studies,
the automatic discovery of serendipitous invariants
enables DIDUCE to pick up many important clues that
would otherwise be missed.

Another important side effect of the DIDUCE system is
that users are informed about rare corner cases, which can be
valuable in helping them understand their program better. Our
experience suggests that our use of confidence levels is, for the
most part, effective in singling out the noteworthy information.
We have seen, however, one instance where the noise in the
invariant violation reports prevented us from identifying an
error.

6. RELATED WORK
The idea of detecting invariants automatically was inspired

by the Daikon invariant detection system developed by Ernst et
al [8]. They proposed dynamic invariant detection as a way to
support program evolution, by helping programmers understand
the code. The Daikon invariant detector runs an instrumented
program and stores all the values taken by variables in the
program run. An off−line analysis phase processes these values
and checks for an extensive set of invariants at each program
point, including properties of single variables, relationships
between multiple variables, and other properties such as if an
array is always sorted at a program point.

DIDUCE is designed to detect anomalies in programs to
help programmers track down bugs and to find corner cases in
programs. Our main contributions with DIDUCE are in scaling
dynamic invariant detection to large programs, incorporating a
systematic framework for dynamic invariant relaxation, and
employing automatic, online checking of invariants, in addition
to detecting them. Keeping the space of dynamic invariants
small allows us to scale our implementation to large programs
and carry out the invariant analysis online, enabling rapid
feedback to the user.

Other dynamic bug detection techniques like Purify [10]
and similar tools are widely used in commercial software
development to detect unsafe programming practices like
uninitialized memory reads, memory leaks and arraybounds
overruns. However, most of these errors are automatically
avoided in a type−safe, garbage−collected language like Java.
Eraser [18] is a dynamic analysis system which detects the set of
locks protecting each variable in a multithreaded program and
flags inconsistencies in the usage of locks. Various dynamic
techniques have been proposed which use profiles of program
runs to aid in program evolution[1][17].

Static bug detection methods attempt to analyze a program
for possible bugs without running it. Static tools can verify that
a program is correct for all inputs, whereas dynamic tools can
only find errors triggered by input test cases. However, program
verification is undecidable in general, and has only been applied
successfully to small programs. Furthermore, static tools often
require manual specification. Compaq ESC is a static checking
tool that asks users to supply invariants at procedure interfaces
and other key program points [5]. Experiences with the tool
suggest that few programmers are willing to insert invariants
into their code in real life. In contrast, DIDUCE is fully
automatic; furthermore, in our experience, misconceptions are a
common source of errors, i.e. the invariants supplied by
programmer would have been incorrect even if he or she had
tried. 

Lackwit [16] allows users to assign finer distinctions to
language types, by using the same declared type to represent
multiple abstract data types. Type checking can then be

performed on abstract data types, ensuring that the program uses
the abstract types in a consistent way. Intrinsa’s PREfix [2] is a
tool which statically analyzes the program for undesirable
properties like possible null pointers. PREfix uses path−
sensitive analysis to explore multiple execution paths in a
function, with the goal of finding paths along which undesirable
properties can hold. Metal is a static analysis tool which allows
users to write invariants about a program in a state−machine
based language [6]. An enhanced compiler checks that these
invariants hold along all possible execution paths. Metal has
been successful in reporting several bugs in large pieces of code,
such as the Linux kernel. The Vault system also allows
programmers to describe resource usage rules and the compiler
to check them [4].

Most of the bugs detected by the tools above are violations
of simple API rules. Experiences with these tools suggest that
even production software contains many such bugs, found
mostly on program paths that have not been tested. To avoid
overwhelming the users with false positive warnings, these tools
tend to only report those that are very likely to be bugs. And
even then, bugs that lie along infrequently executed code paths
have lower priority, and may simply join the program’s long list
of outstanding bugs awaiting to be fixed. DIDUCE complements
static approaches by finding subtle algorithmic bugs that occur
on some inputs or after running a longtime. Thesebugs are
found along program paths that are executed often, but just
never with a particular combination of inputs.

Nimmer and Ernst [15] propose a combination of static and
dynamic approaches by feeding invariants hypothesized by
Daikon to the static checker ESC−Java. If ESC−Java fails to
verify a hypothesis, it suggests that the hypothesis may not hold
true for some inputs. This approach can be used to find potential
bugs if invariants are collected from correct runs and if ESC can
then find the conditions under which the invariants are violated.

Our bug detection methodology with DIDUCE is similar in
spirit to that proposed by Engler et al.[7] Their approach also
tries to infer bugs by detecting inconsistencies from commonly
observed behavior. While they follow a purely static approach
by looking at structures in the code, we detect anomalies in
dynamic program runs. Furthermore, their tool is still limited by
the types of errors which are coded in the analysis.

7. CONCLUSIONS
This paper proposed the idea of finding program anomalies

through an on−line dynamic program invariant detection and
checking engine. Our experimentation with four real−life
applications suggests that DIDUCE is effective in detecting
hidden errors and finding the root causes of complex
programming errors. It can findbugs that result from
algorithmic errors in handling corner cases, errors in inputs, and
developers’ misconceptions of the APIs. It helps programmers
locate bugs in unfamiliar code and, sometimes even in codes
that have not been instrumented. Furthermore, no up−front
investment is required; users start using DIDUCE only when
they are confronted with a bug, or the possibility of one. While
we used only the simple, default invariants in our experiments,
users can tailor DIDUCE to check for more complex invariants
to suit the specific application.

In the future, we wish to lower the run−time overhead of
DIDUCE so that it can be used to monitor applications in use.
Coupling this approach with an error recovery mechanism will
make software more resilient to failures. We also intend to
explore the use of anomaly detection to aid in the software
evolution process. An automatic tool that can identify the subtle



differences in the behaviors of programs before and after
modification would be invaluable.
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