
TSOtool: A Program for Verifying Memory Systems Using
the Memory Consistency Model

Sudheendra Hangal†, Durgam Vahia‡, Chaiyasit Manovit‡,
Juin-Yeu Joseph Lu‡ and Sridhar Narayanan‡

Processor and Network Products, Sun Microsystems
tsotool@sun.com

†Sun Microsystems India Private Limited

Divyashree Chambers, Shantinagar

Bangalore, 560 025 KA India

‡Sun Microsystems

430, N. Mary Ave

Sunnyvale, CA 94085 USA

ABSTRACT
In this paper, we describe TSOtool, a program to check the
behavior of the memory subsystem in a shared memory
multiprocessor. TSOtool runs pseudo-randomly generated
programs with data races on a system compliant with the
Total Store Order (TSO) memory consistency model; it then
checks the results of the program against the formal TSO
specification. Such analysis can expose subtle memory errors
like data corruption, atomicity violation and illegal
instruction ordering.

While verifying TSO compliance completely is an NP-
complete problem, we describe a new polynomial time
algorithm which is incorporated in TSOtool. In spite of being
incomplete, it has been successful in detecting several bugs in
the design of commercial microprocessors and systems,
during both pre-silicon and post-silicon phases of validation.

Keywords
Memory consistency models, Multiprocessor verification,
Sequential Consistency, Total Store Order

1. Introduction
The memory subsystem is amongst the most complex parts of
modern computer system designs based on shared memory
multiprocessing. Therefore, it is also among the most bug-prone.
With the large gap between processor and memory speeds, and
the trend towards multiple logical processors on a single chip -
for example, by employing chip multiprocessing (CMP) or
simultaneous multithreading (SMT) techniques - there is intense
pressure on computer architects to design high performance
memory systems to feed these processors. This leads to ever
more complex designs involving shared caches, pipelined
protocols, speculative memory operations and elaborate
coherence mechanisms. Verifying that these designs work
correctly, both in terms of protocol and implementation, is a
challenging problem. This is not a problem for high-end
workstation and server systems alone; even personal computers
are beginning to incorporate multiprocessing capabilities. Our
experience has been that, despite extensive simulation, bugs are
still found in multiprocessing functionality after tapeout, and
often take a long time to wring out.

A part of the problem in verifying multiprocessor memory
systems is the difficulty of reasoning about the validity of results
of a program which has data races. Since the results of such a
program are timing-dependent, multiple legal outcomes may
exist, and a simple architectural model of the processor cannot be
used to cross-check results. TSOtool is a dynamic testing tool
which is aimed at solving this problem1. It operates by running a
pseudo-randomly generated program with data races on the
system, observing the results and then checking the observed
outcome for validity under the memory model of the machine
(Total Store Order, or TSO). TSOtool is able to perform end-to-
end checks on a detailed simulation model of the system, or on a
real system, using a large space of randomly generated test cases.
This approach can expose bugs in the design of the memory
system no matter where they may be hiding - for example, in the
design of caches, coherence protocols, system interconnects, or
memory controllers.

TSOtool uses the memory consistency model of the
multiprocessor system to verify the implementation of the
memory system. A memory consistency model (interchangeably
referred to as a memory model in this paper) is a specification of
the required semantics and ordering of various memory
operations on a shared memory multiprocessor. Memory models
effectively establish a contract between the programmer and the
machine, and therefore both programs and hardware
implementations are required to be correct with respect to this
definition. Memory models significantly impact the ease of
programming the machine, as well as the set of hardware and
compiler optimizations which may be performed legally. Adve
and Gharachorloo's tutorial surveys many of the issues
surrounding memory models [1]. Commercial architectures
support a variety of memory models, such as Sequential
Consistency (SC), Total Store Order (TSO) and Release
Consistency (RC). While SC and TSO present a more intuitive
model to a programmer, multiprocessors supporting these models
need to perform aggressive optimizations to perform comparably
to those with more relaxed models [8][10]. Making the several
complex elements involved in the design of the memory

1In this paper, we use the term verification to refer to functional
testing of hardware designs, following industry-standard
terminology.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

hierarchy work together to preserve the programmer guarantees
afforded by the memory model is a major challenge for computer
architects today.

TSOtool can be run on commercially available SPARC
architecture based platforms running a standard operating
system, and does not need any modifications to either the
hardware or the operating system. As a result, we have been able
to use it easily and effectively on a variety of multiprocessor
systems based on several different SPARC microprocessors. In
addition, TSOtool has been used extensively in pre-silicon
validation environments. In such environments, TSOtool can
optionally use any extra observability to improve the quality of
results. In later sections, we will report our experiences using
TSOtool, and describe the kinds of bugs we successfully found in
the design of several microprocessors and multiprocessor
systems, both in the microarchitecture definition and in the
implementation of the microarchitecture. With minor extensions,
the same approach can be used to test for compliance of test
program runs to other memory models as well.

There have been several prior approaches to the verification of
memory systems. With formal approaches, verifying that a
particular optimization is correct under a given memory
consistency model can involve subtle proof methodologies, using
automatically or manually generated proofs. Such approaches
usually employ a high-level abstraction of the real design to
check specific properties of the abstracted implementation.
However, they leave the actual implementation of the processor
unchecked, which is, in fact, a significant source of complexity
and errors in large designs. On the other hand, prior testing-based
approaches for multiprocessors are able to test only programs
whose results can be reasoned about a priori.

Our major contributions in this paper are the following:

1. We present a new polynomial time algorithm for detecting
TSO violations in a multiprocessor program. With trivial
modifications, this algorithm can be extended to other
memory models such as SC or Partial Store Order (PSO).
The algorithm is sound but incomplete from the point of view
of detecting TSO violations, i.e., it will never falsely report
errors, but may sometimes miss errors. We presume the
machine innocent, unless proved guilty. Our algorithm is
incomplete, trading off accuracy for runtime, since the
problem of detecting a TSO violation completely is NP-
complete.

2. We describe how we modeled a real-life instruction set
(SPARC V9) in terms of the load and store operations in the
formal TSO specification.

3. We describe our experiences with a new verification
methodology based on TSOtool which helped us detect
several subtle bugs in the design of commercial
microprocessors and multiprocessor systems.

The rest of this paper is organized as follows. Section 2 describes
the TSO memory model in terms of its formal axioms. Section 3
provides an overview of the different phases of TSOtool and how
various instructions are modeled by TSOtool. Section 4 describes
the analysis algorithm. Section 5 presents the results of using
TSOtool, and describes some bugs TSOtool was able to uncover.
Section 6 surveys related work, and Section 7 summarizes the
paper, and concludes.

2.The TSO Memory Model
The axioms of the TSO memory model have been formally
described by Sindhu et al [17]. We briefly reproduce the six
axioms below. The notation used is as follows:

La
i a Load to location a by processor i

S a
i a Store to location a by processor i

�La
i ; S a

i � a Swap to location a by processor i

Val �La
i � the value read by La

i

Val �S a
i � the value written by Sa

i

Opa
i either a load or a store

Two kinds of orders are used in the definition of these axioms (an
order is defined as a relation that is reflexive, anti-symmetric and
transitive): a per processor program order denoted by the
character ; and a global memory order denoted by the character
�. In the following axioms, loads are represented in the global
order by the time at which their return value is effectively bound
(i.e. cannot be changed) while stores are represented by the time
at which the store is effectively visible to all processors in the
system. The following are the 6 TSO axioms:

Order: There is a total order over all stores.
� S a

i , S b
j :�Sa

i�S b
j���S b

j�Sa
i �

Atomicity: Atomicity requires that there be no intervening stores
between the load and store components of an atomic operation.
�La

i ; S a
i ���La

i�S a
i ���� S b

j : S b
j�La

i�S a
i�S b

j�

Termination: All stores and swaps eventually terminate. This is
formally specified by requiring that if one processor does a store
and another processor repeatedly does loads to the same location,

�there will eventually be a load that succeeds S in
Sa

i��La
j ;�	�
La

j��La
j ;�	 suchthat S a

i�La
j

LoadOp: If an operation follows a load in ; then it must also
�follow the load in

La
i ;Opb

i � La
i�Opb

i

StoreStore: If 2 stores appear in a particular order in ; then they
�must also appear in the same order in

Sa
i ; S b

i �S a
i�S b

i

Informally, the LoadOp and StoreStore axioms together imply
that the only kind of reordering allowed between operations on
the same processor is for loads to overtake stores, i.e. a load
which succeeds a store in program order may precede it in global
order.

Value: The value returned by a load is the value written to it by
the last store in global order, amongst the set of stores preceding
it in either global order or program order.

Val �La
i ��Val �Max

<
�
S a

k�Sa
k�La

i ��
S a
i�S a

i ; La
i ���

The value axiom allows a load to read the value written by an
earlier store on the same processor, before that store has
completed in global order. Consider a load which returns the
value written by an earlier store (in program order) on the same
processor to the same address; this load may be ordered either
before or after the store in global order. This permits
implementations with store buffers to locally bypass data from a
store to a load, before the store is globally visible.

In addition to these axioms, we add an axiom pertaining to
memory barriers M:

Op1 ; M ; Op2�Op1�Op2 �Membar �

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

The basic TSO axioms do not refer to non-uniformly sized load
and store accesses. We apply these axioms at a byte level and
subject to the definition in the architecture, require that accesses
of size more than a single byte happen atomically - for example,
in the SPARC architecture, a single aligned memory access of up
to 64 bits is required to happen atomically [20].

Real-life instruction sets have more complexity than just loads,
stores and swaps. In TSOtool, we also incorporate several other
memory instructions into the same framework: apart from
different size loads and stores, we accommodate other kinds of
atomic instructions, memory barriers, block memory operations,
prefetches, non-faulting loads, non-cacheable accesses with or
without side-effect, etc. An example of the kinds of ordering
rules between various types of memory operations in a real
processor can be found in the UltraSPARC-III Users Manual
[18].

3. TSOtool Operation
There are 3 phases of TSOtool operation, as illustrated in Fig. 1.

In Step 1, TSOtool generates a pseudo-random, multithreaded
test program with data races to a relatively small number of
shared memory locations. Various properties of the generated
program can be controlled by a user to target the test towards
specific kinds of instruction sequences or sharing patterns.

In Step 2, the user runs this test program on a platform which
supports the TSO memory model. If real hardware is available,
this environment can be an actual multiprocessor system, running
an operating system. Or, it can be a simulation model of the
processor or the system. The simulation models can be at
different levels of abstraction, such as architectural, RTL
(Register Transfer Level) or gate-level. The simulation may
model either the entire processor or only units belonging to the
memory subsystem. The verification environment itself can
include software simulators, hardware accelerators or FPGA-
based emulation machines. We have run TSOtool generated test
programs in all of these environments.

In Step 3, the results of the test program are fed back into
TSOtool for analysis. At the end of analysis, a pass or fail is
signaled. Note that it is possible that different runs of the same
test program may observe different results in the presence of
external perturbation (such as operating system activity.)
Therefore, the analysis result always applies to the correctness of
a particular run of the test program.

The rest of this section describes each of these phases in more
detail.

3.1 Test Generation
In the test generation phase, TSOtool creates a pseudo-random
program with data races, based on optional inputs from a user.
Users typically get the generator to create a relatively short test
with intense sharing. Users can control parameters such as the
relative frequency of instruction types, memory layout and loop
characteristics. Based on these parameters, TSOtool generates an
internal representation of the test program, each thread
represented by a sequence of nodes corresponding to every
operation in that thread. This program sequence is then mapped
to either a set of assembler instructions, or a series of instructions
in some other language suitable for the test environment.
Occasionally, we need to randomize events during the test (such
as the direction of hard-to-predict conditional branches), so a

dynamic software LFSR is maintained on each processor and
used as a source of random numbers.

Unique store values: Having unique store values in the test
program helps TSOtool map every load value back to the store
which created it. This feature is important for the analysis
algorithm, as explained in Section 4. We ensure that store values
are unique by maintaining two running counters, one each in a
floating point register and an integer register. These counters are
used as the source of store values in the test program. The
expense of maintaining these counters is minimal - an increment
operation for every unique store value.

Load Observability: On physical systems, which provide no
additional observability, the test program includes code to
observe and save the results of all the load operations in the
program. The results are initially buffered in two sets of
processor registers, one for floating point results and one for
integer results. When a results buffer is full, its contents are
flushed to memory. Buffering helps to reduce perturbation in the
middle of test operations. In environments where the load results
can be observed through other means, code to explicitly save
results may not be needed.

Other instructions: In addition to 32-bit, 64-bit and 128-bit loads
and stores, some of the other kinds of operations supported by the
generator are the following:

� Memory access instructions to various Address Space
Identifiers (ASIs)

� Memory barrier instructions - these require that all previous
instructions on the issuing processor are globally visible
before the next instruction is issued.

� Various flavors of prefetch, such as prefetch for read-once,
write-once, read-many, or write-many. Prefetches may be
'strong' or 'weak'. Strong prefetches may incur TLB miss
traps, while weak prefetches are silently dropped in case of a
TLB miss. Certain patterns of load accesses can also trigger a
hardware prefetch operation in some processors.

� Different types of block load and store instructions which
read or write 64 bytes at a time. These have special rules to
ensure ordering with respect to other instructions.

Fig.1: TSOtool usage flow

G
en

er
at

io
n

R
un

A
na

ly
si

s

TSOtool
Analyzer

MP System
MP Simulation
RTL/Gates/C Model
Fullchip/Block-level

TSOtool
Generator

Run results from
other sources

User preferences

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

� Instructions which flush data from various levels of the
cache, or instructions which flush the execution pipeline.

� Compare and swap instructions: Compare and swap (CAS)
instructions are emitted with a preceding load of the same
size to the same address. The value returned by the load is
used as the compare value for the CAS instruction. This
gives the CAS a reasonable probability of resolving into a
swap; the compare may occasionally fail when a store to the
same address intervenes between the load and the CAS
instructions.

� Non-faulting loads: These are loads which silently return 0 if
the address causes a memory fault. For valid memory
addresses, the behavior is required to be the same as that of a
regular load. Non-faulting loads in the test program are
randomly marked to access either faulting or non-faulting
addresses.

� Unpredictable conditional branches

� Sequences of operations which cause cache line replacements
and writebacks.

� Inter-processor interrupts

TSOtool allows users fine-grained control over the test program,
as well as the ability to specify desirable sequences of memory
operations which are considered likely to exercise known corner-
cases in the design, such as a queue in the system becoming full
or a hazard condition being created. Users can improve the
quality of testcases generated using tools which report test
coverage.

3.2 Test Run
As mentioned earlier, the generated test program can be mapped
to a variety of test environments. On physical systems, we
typically run TSOtool on configurations of up to 16 processors
with a few thousand memory operations per processor.

In a simulation environment, TSOtool can optionally utilize the
additional observability provided by the environment. For
example, if the result of load operations can be directly observed
from the simulation, explicit operations to buffer and save them
are omitted from the test program.

Simulation environments often have the useful capability to
detect errors via runtime checkers monitoring the design.
TSOtool can make use of these checkers to detect failures in the
course of simulation. In some accelerated simulation
environments, however, it is expensive or impossible to observe
events in the system or to add runtime checkers. In one such
environment, we can improve simulation throughput by a few
orders of magnitude by disabling observability features and
runtime checkers. In these cases, TSOtool's ability to
independently observe the results and analyze them for
correctness is very useful.

3.3 Analysis
In the analysis phase, the nodes in the program representation of
step 1 are first expanded to form nodes in an analysis graph. The
analysis graph is formed by unrolling loops and resolving
branches in the original program to model the dynamic sequence
of memory operations in the test. Nodes representing instructions
which cover multiple shared words of interest are expanded, so

that all loads, stores and swaps in the analysis graph are of a
uniform size.

Before starting analysis, the remaining program nodes are
processed in the following manner:

� Prefetch instructions, cache or pipeline flushes and cache line
replacements and writebacks should have no programmer
visible effect and are ignored for the purpose of analysis.

� Non-faulting loads to illegal addresses are checked for a
return value of 0, and then ignored for the rest of the analysis.
Non-faulting loads to legal addresses are converted to regular
loads.

� Compare and swap instructions are resolved by examining
the return value of the instruction. If the CAS completed, the
instruction is converted to a swap of the same size, else it is
converted to a regular load.

Next, edges are added in this graph to represent the memory
�order according to the algorithm described in the next section.

The TSOtool analyzer also has a standalone analysis interface
through which it can be fed a program description along with the
values of all loads and stores, and this outcome can be checked
for TSO violations. This feature allows us to potentially plug in
the results from other test programs which obey the unique store
values requirement.

3.4 Debug
When a TSO violation is detected, TSOtool emits a graphical
representation of the relevant area in the analysis graph. The user
can click on each edge in the graph to understand the reason for
its existence, and hence follow the chain of reasoning used by
TSOtool to infer the edge.

TSOtool also emits the analysis graph to a text file in a format
comprehensible to users. Users can edit this file and feed it back
to TSOtool via the analysis interface if they wish to make an
educated guess about which load result is incorrect and what the
correct load result should have been. This “what-if” analysis is
often useful to evaluate the correctness of other possible results.

4. Analysis Algorithm
The TSOtool analyzer is the key component that differentiates
our approach from conventional approaches used in
multiprocessor verification. The analyzer reads in the sequences
of memory operations on all processors, annotated with the result
returned by each load during program execution. It then infers as
many relations as possible between memory operations that must
hold in order to satisfy the TSO axioms.

A directed graph is used as the data structure for the analysis.
Nodes in this graph represent operations and edges represent
ordering relations in the global memory order �. Since � is
transitive, any path in the graph implies the existence of the �

relation between the source and destination of the path. We
ignore reflexivity of � by not adding an edge from each node to
itself.

A synthetic node at the root of the graph acts like a set of stores
writing initial values to all shared addresses. A violation of any
TSO axiom will cause a conflict in the order of two or more
operations and manifest as a cycle in the graph. A cycle implies
that � is not a valid order.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

A set of atomic operations is modeled in the graph by forcing
incoming edges incident to any node in the set to point to its first
node; outgoing edges from any node in the set similarly leave
from its last node.

Fig. 2 provides a high level outline of the TSOtool analysis
algorithm. The algorithm uses as input a mapping of every value
to the store which wrote that value. A load reading a value never
written to that address is signaled as a failure at the outset. After
this step, the algorithm adds edges by applying the following
rules.

Static Edges: In the first step, program order edges are added to
the graph according to the following 3 rules. These edges are
independent of run results:

1. R1: L;Op ⇒ L ≤ Op (LoadOp axiom)

2. R2: S;S' ⇒ S ≤ S' (StoreStore axiom)

3. R3: S;M;L ⇒ S ≤ L (Membar axiom)

The above rules ensure that the LoadOp, StoreStore and Membar
axioms are satisfied by the relations embodied in the graph.

For the remaining rules, let S, S', and L be accesses to the same
address.

Observed Edges: For all loads, the edges specified by the
following two rules are added based on the load results.

4. R4: Val[L]=Val[S] ∧ ¬ S;L ⇒ S ≤ L (Value axiom)
This follows because S must be in one of the two store sets in
the Value axiom for L

5. R5: Val[L]=Val[S] ∧ S';L ⇒ S' ≤ S (Value axiom)
This must be true because if both S ≤ S' and S';L are true,
Val[L] cannot equal Val[S] by the Value axiom.

Inferred edges: In the last step, we add more edges based on two
rules which follow from the Value axiom:

6. R6: Val[L]=Val[S] ∧ S' ≤ L ⇒ S' ≤ S (Value axiom)
Assuming otherwise, S ≤ S' (and given S' ≤ L) will lead to a
contradiction because Val[L] cannot equal Val[S].

7. R7: Val[L]=Val[S] ∧ S ≤ S' ⇒ L ≤ S' (Value axiom)
Assuming otherwise, S' ≤ L (and given S ≤ S') will lead to a
contradiction because Val[L] cannot equal Val[S].

For rule R6, the set of all possible S' such that S' � L can be found
by traversing the graph backward from L to find its predecessors
known at that time. Similarly for rule R7, traversing the graph
forward from S will reach all S' such that S � S'. However, this
forward and backward graph traversal depends on predecessors
and successors of the nodes in global order, which is still in the
process of being derived. To overcome this problem, we iterate
over the application of rules 6 and 7 to the graph, till a fixed
point is reached and no further edges are added in a complete
iteration. The graph is then checked for cycles. If a cycle exists, it
implies that the relations derived do not constitute a valid order.

Fig. 3 illustrates an example of a 4-thread program outcome
which violates TSO. There are 2 memory locations involved: A
and B. The notation for this example and the following examples
in this paper is: S[A]#1 refers to a store which writes value 1 to
location A, while L[B]=92 refers to a load to address B which
reads value 92. Fig. 4 illustrates graphically how a cycle is
formed in the analysis graph.

 P1 P2 P3 P4

 S[B]#91 S[A]#2 S[B]#92 L[B]=92

 S[A]#1 L[A]=2 L[B]=91

 L[A]=2 L[B]=92

Fig: 3: An Example Program outcome which violates TSO

Fig. 2: High level description of TSOtool's analysis algorithm

Input:
A per processor instruction sequence consisting of loads, stores, and
membars. A swap is considered to be both a load and a store.
A function map, which maps a value to the store which created it:

Output:
A boolean value indicating whether or not the given program outcome
obeys all the TSO axioms.

[rule R1-R3]
for each processor
 for each instruction node n in the program order
 if n is a store or a membar then
 add edges from last load, store, and membar to n
 else if n is a load then
 add edges from last load and membar to n
 end if
 end for
end for

[rule R4]
for each load instruction L
 S := map(load value of L)
 if S does not precede L in program order then add edge S→L
end for

[rule R5]
for each load L,
 S' := last store to this address preceding this L in program order
 S := map(load value of L)
 if S != S' then add edge S'→S
end for

[rule R6 and R7] - done in iterations
do
 for each load L
 S := map(load value of L)
 recursively trace all store predecessors S' of L:
 if S' != S and they write to the same address then
 add edge S'→S
 end if
 flag a TSO violation if a cycle is found
 end for
 for each store S
 recursively trace all store successors S' of S:
 if S' and S write to the same address then
 add edge L→S' for all loads L reading value written by S
 end if
 flag a TSO violation if a cycle is found
 end for
until no more edges can be added

find cycles in the graph and flag a TSO violation if a cycle is found

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

� First, static edges E1, E2, and E3 are added using rules R1
and R2 which simply establish program order relationships
using the LoadOp and StoreStore axioms.

� Next, observed edges E4 to E7 are added by applying rule R4
to all load nodes in the graph. Note that rule R4 does not
create an edge from S[B]#92 to L[B]=92 on P2 because they
are on the same processor.

� Next, observed edge E8 is added by applying rule R5 to
L[A]=2 on P0

� Next, during application of Rule 6 for the load L[B]=92 on
P2, S[B]#91 is found to be one of its predecessors (this is due
to the presence of edge E8); this lets us add inferred edge E9.

� Finally, tracing the predecessors of L[B]=91 on P3 leads us
to S[B]#92, giving us the inferred edge E10 (rule R6).

Fig. 4: Edges inferred by TSOtool for the program in Fig. 3

A cycle in the graph (shown in bold) is formed by edges E9 and
E10 indicating a conflicting order between S[B]#91 and S[B]#92,
a TSO violation.

Time Complexity: Verifying Sequential Consistency (VSC) is
known to be an NP-Complete problem even when the mapping
function between load values to stores which wrote those values
is known. This is termed as the VSC-read problem by Gibbons
and Korach [9] – in this terminology, our problem would be
called the VTSO-read problem (Verifying TSO with read-
mapping). Since every instance of a VSC-read problem can be
trivially mapped to an instance of the VTSO-read problem by
inserting memory barriers after every store which is succeeded
by a load in program order, it can be shown that the VTSO-read
problem is also NP-complete.

The algorithm in Fig. 2 clearly runs in polynomial time: if the
number of nodes in the graph is n, the number of iterations is
bounded by the number of all possible edges, O(n2) since each
iteration adds at least one edge. The time complexity of each
iteration is at most O(n3) since there are O(n) Store-Load pairs,

and we need to spend at most O(n2) time to traverse each edge in
the whole graph for each pair. In practice, we implement
optimizations to bound the predecessor and successor subgraph
traversal when it is known that no new constraints can be added
to the graph. Our analysis algorithm runs in the order of minutes
on programs with about 100,000 operations – Section 5 has more
details on analysis runtime.

The analysis algorithm described in this section can also be easily
modified to verify other memory models. For example, in
Sequential Consistency, all the rules remain the same, except for
the additional requirement between stores and loads on the same
processor.2 Therefore, the only difference lies in the initial set of
edges determined from program order and the application of the
remaining rules remains the same.

Incompleteness: In the absence of cycles in the graph, our
polynomial time algorithm creates a global order relation which
is consistent with the LoadOp, StoreStore, Membar, Value and
Atomicity axioms. (The Termination axiom involves an infinite
sequence of loads and is difficult to test in practice; but it is
vacuously satisfied.) However, our algorithm is incomplete
because it does not explicitly ensure that the Order axiom is
satisfied. To satisfy the Order axiom, we would have to identify
unordered writes at the end of our algorithm, and search for a
combination of relations between them which is compatible with
the results; this search would make the runtime exponential in the
worst case, and the analysis time impractically large. By not
explicitly enforcing the Order axiom, our algorithm trades off
accuracy for reasonable analysis time.

Fig. 5 illustrates a case where an existing relation is not inferred
by our analysis algorithm; the edges in the graph are depicted at
the point that the algorithm of Fig. 2 has reached a fixed point
and terminated. Notice that S[A]#1 and S[A]#2 are left
unordered. However, we can reason that S[A]#1 � S[A]#2 must
be true. If not, S[A]#2 � S[A]#1 by the Order axiom; but given
this order, only one of the two values, either 3 or 4, can be read
by the two loads to location B that are ordered after S[A]#2.
While this example is not yet a missed TSO violation, adding a
similar, mirrored set of nodes to a different location C (2 stores to
C ordered before S[A]#1, and 2 loads to C ordered after S[A]#2)
creates an instance of a TSO violation which is missed by our
algorithm.

Fig. 5: An example when TSOtool misses an edge

2The Value axiom for the SC memory model is defined as:
Val �La

i ��Val �Max
<

�S a
k�S a

k�La
i �� ;

the exclusion of the term {S| S;L} compared to the TSO Value
axiom does not matter because S;L implies S�L in SC

P0

P1 P2

P3

S[B]#91

S[A]#1

E1 - Rule R2

S[B]#92

E9 - Rule R6

L[B]=91

E7 - Rule R4

S[A]#2

E8 - Rule R5

L[A]=2

E4 - Rule R4

L[A]=2

E5 - Rule R4

E10 - Rule R6

L[B]=92

E6 - Rule R4

L[B]=92

E2 - Rule R1 E3 - Rule R1

S[B]#4S[B]#3

S[A]#2

P1P0

P2

L[B]=4

S[A]#1

L[B]=3

P5P4

P3

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

5. Results
TSOtool has found numerous bugs during both the design
simulation and silicon bringup processes on various types of
processors and systems at Sun Microsystems. In this section, we
present the results of deploying TSOtool on 6 different
microprocessors, without explicitly identifying each one of them
for proprietary reasons.

Sun currently has several teams working towards the
development of both new generation and derivative
microprocessors. Despite employing widely different
architectural techniques, all of these processors and systems
support the TSO memory model. This is not surprising since
switching to a more relaxed memory model introduces potential
incompatibility problems with pre-existing software, and is
therefore almost as difficult as making changes to the instruction
set.

A major advantage of our approach, which reasons about
correctness at the memory model interface without incorporating
knowledge of implementation details, is that it allows us to
deploy TSOtool on several different processors and systems
efficiently. Even in cases where we use the observability in
simulation environments to extract load results, the dependence
on the details of the environment is usually quite small. Most
environments usually support a mechanism to trace the dynamic
instruction sequence executed, along with the architectural
results of each instruction. This is sufficient for TSOtool to
obtain the load values read by the test program.

Table 1 lists the number of bugs uncovered by TSOtool on six
processor designs based on the SPARC architecture. This total of
106 bugs is classified based on whether they were architecture
bugs (the design worked as intended, but the microarchitecture
specification itself was wrong), design bugs (the designer missed
a corner case which violated the specification), and monitor or
environment bugs, which exposed problems in runtime checkers
or other parts of the simulation environment. Most of these bugs
involved complex interaction between multiple functional units
and require a detailed understanding of the design to root-cause.

CPU Architecture
Bugs

Design
Bugs

Monitor
Bugs

Environment
Bugs

CPU1 0 3 0 0

CPU2 0 4 3 0

CPU3 0 11 8 5

CPU4 0 17 8 0

CPU5 2 20 5 0

CPU6 5 14 1 0

Total 7 69 25 5

Table 1: Classification of bugs found by TSOtool on various processors

CPU1 to CPU4 are derivative processors based on an earlier
design that include significant changes and enhancements in
cache hierarchy, memory controller and bus interface. The core
pipeline remained unchanged in all these derivatives. In these
derivatives, TSOtool did not expose architecture bugs (since the
architecture was already stable), but did find bugs in the design

and the verification environment. CPU5 and CPU6 are
completely new designs and in these cases, TSOtool uncovered
architecture bugs which were overlooked by the architects.

Table 2 shows the classification of bugs in terms of functional
units. For CPUs 1-4 the presence of bugs was mainly in the cache
units, memory controller and bus interface units for CPU1-4,
consistent with the derivative nature of these processors.

CPU Pipe Caches TLB LSU
Mem
Cntlr

Interco
nnect

CPU1 0 3 0 0 0 0

CPU2 1 5 0 0 1 0

CPU3 0 17 0 0 0 2

CPU4 0 8 0 0 8 9

CPU5 3 11 6 4 0 1

CPU6 0 5 0 10 0 0

Total 4 49 6 14 9 12

LSU = Load/Store Unit

Table 2: Bugs found by TSOtool in various functional areas

5.1 Bug Examples
To illustrate the nature of bugs which TSOtool found, consider
the example in Fig. 6. This illustrates relevant operations from a
bug found by TSOtool during the silicon bringup process in one
of the processors. BST refers to a 64-byte block store operation.
A is a 4 byte memory location.

 P0 P1

 BST [A]#1 SWAP [A]=1, #2

 LD [A]=1

Fig. 6: Example of a bug found by TSOtool

(SWAP[A]=1,#2 refers to a swap to location A, reading the value
1 and writing the value 2)

The above outcome is a violation of the TSO memory model.
TSOtool detects the violation for this outcome based on the
following reasoning:

Application of rule R1 and the fact that SWAP is atomic add the
following edge:

� �SWAP LD

Application of rule R4 adds the following edges:

� �BST SWAP

� �BST LD

Application of rule R5 on the BST-LD pair adds the following
edge:

� �SWAP BST

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

These relations when combined create a cycle in the analysis
graph, due to the contradiction in the order between the BST and
the SWAP.

After careful debugging, the designers realized that the following
sequence of events had lined up to create this problem. This
particular processor had a write cache which acted as a buffer for
writes.

1. The BST instruction on P0 caused an invalidate to be issued
on the system bus for the cache line containing address A.

2. The SWAP on P1 was issued and found the corresponding
line present in its write cache in the modified state, while the
invalidate was still in flight.

3. The BST invalidate reached the L2 cache and write cache on
P1. The swap had to re-read the updated data from main
memory, and the line was installed in L2 cache with the BST
data.

4. The store part of the swap wrote the new data in the write
cache, but because of a design error, did not modify the tag of
that line in the write cache to dirty. This led to the data
update being lost when the line was later replaced in the write
cache.

The lost tag write in step 4 happened due to a special
optimization the processor performed when the tag is in a certain
state at the time the swap is issued. Notice that this type of
problem may remain latent for a long time in a system design,
leading only occasionally to mysterious data corruption or
system crashes. Only proactive testing using test programs with
aggressive data races can expose such problems during the
verification or debug phase.

Fig. 7 illustrates another real bug found on a different processor
in the pre-silicon verification environment. CAS refers to the
atomic compare and swap instruction. This following outcome
violates the atomicity of the CAS instruction:

 P0 P1

 (Initial value in locations A and B is 0)

 CAS [A]=0, #1 CAS [B]=0, #1

 LD [B]=0 LD [A]=0

Fig. 7: Example of a bug found by TSOtool

Both CAS instructions completed the swap successfully. Let
CAS.LD refer to the load part of this instruction and CAS.ST
refer to the store part. The above outcome is flagged as a TSO
violation by TSOtool, based on the following inferences:

Application of rules R1 and R2 add the following program order
edges:

� �CAS.LD [A] CAS.ST [A]

� �CAS.LD [A] LD [B]

� �CAS.LD [B] CAS.ST [B]

� �CAS.LD [B] LD [A]

The following edges are added due to Rule R7 and the fact that
the Load and Store parts of the CAS are atomic.

� � �LD [B] CAS.ST [B] & LD[B] CAS.LD [B]

� � �LD [A] CAS.ST [A] & LD[A] CAS.LD [A]

These edges lead to a cycle in the graph. The cause is an
atomicity violation in the CAS instruction.

Again, after careful debugging of this problem, the designers
realized that the problem was caused by a performance
optimization in the microarchitecture which had been thought to
be valid. The optimization caused the lock for the atomic swap to
be released early, before the store part of the swap was complete.
In some cases, this optimization was incorrect and opened a
window for another store to sneak in and cause an atomicity
violation.

Here are root-causes of some other failures detected by TSOtool:

� A prefetch cache dropped an invalidate request, and later
returned stale data to the pipeline.

� Cacheable and non-cacheable stores went through different
write queues; in some cases, the ordering between these
queues was violated.

� The DRAM controller dropped a speculative load request due
to a buffer full condition, leading to data corruption later.

� Bus controller flow control logic caused a deadlock scenario
in the system.

Besides such hardware bugs, TSOtool also found two bugs in the
operating system. These bugs were related to the way the
operating system emulated some of the memory instructions of
the architecture. This demonstrates the immense power of an end
to end checker for the complete memory system.

5.2 Analysis Runtime
Fig. 8 and Fig. 9 plot analysis runtimes for various configurations
on a 450 MHz UltraSPARC-II based system. Although the actual
runtime is affected most by the number of nodes in the graph,
there are two other factors that affect the structure of the graph
and the number of iterations required to reach a fixed point, and
hence the runtime. These two factors are the processor count and
number of shared locations. Fig. 8 illustrates the effect of number
of processors on runtime with number of shared words fixed to
16. The X-axis in this graph represents the total number of
memory operations in the test and the Y-axis represents the
runtime for TSOtool analysis. A couple of points to notice in the
graph are:

� Run time scales quite linearly with total memory operations
for a given number of processors

� For the same number of total memory operations, run time
increases with the number of processors

This is mainly because a higher number of processors creates
more ordering relationships between different processors and
creates a broader and denser analysis graph, which in turn takes
longer time to reach a fixed point.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

Fig. 9: Analysis time for different # shared addresses

Fig. 9 shows the effect of the number of shared locations on
runtime for a fixed processor count of 4. Again, notice that
runtime varies linearly with the number of memory operations
for a given number of shared locations, and for a constant
number of memory operations, runtime increases with a higher
number of shared locations. This can be attributed to the fact that
more addresses lead to a sparser graph with more dispersed
ordering relations between processors. This causes a larger
number of nodes to be visited during the traversal of
predecessor/successor subgraphs due to Rules R6 and R7.

Since TSOtool is often able to trigger and detect problems in
system-level environments using relatively short test programs, a
TSOtool test failure on hardware has a good probability of being
reproduced in the simulation environment. This is critical for
porting the test to simulation environments, where debugging is
easier but speeds are much lower than on physical hardware.

6. Related Work
Gibbons and Korach established theoretical bounds on the
complexity of verifying sequential consistency under various
conditions [9]. Cantin et al established similar results on the

complexity of verifying memory coherence, where only one
memory location is involved [6].

Other work aimed at verifying memory models in practice can be
broadly categorized into static approaches and dynamic
approaches. Static methods of verifying memory consistency
models usually depend on formally proving that some model of
the system obeys rules of the memory model [3][4]. While such
methods can find bugs in protocols and optimizations at a high-
level, they may miss several bugs which are present only in the
implementation. The implementation is a ripe source of bugs,
since a high-end microprocessor design consists of millions of
lines of code. Formal approaches do not scale to large systems
with a lot of detail embedded in them.

Dynamic testing on the other hand can exercise the system in all
its detail, but is limited to bugs which can be uncovered by the
test cases run on the system. ARCHTEST is a program which
tries to identify the memory model of a multiprocessor by
running a specific set of test cases which look for evidence of
various kinds of ordering relaxations [7]. Nalumusu et al use the
tests in the ARCHTEST framework in conjunction with model
checking on a Verilog representation of part of the memory
system [14]. Both of these approaches require the tests to be
fixed idioms, whose outcome can be reasoned about a priori, and
cannot work with pseudo-random tests.

An exhaustive approach due to Park and Dill [15] uses an
executable specification to enumerate all possible outcomes for
small assembler programs under a specified memory model. This
approach can be applied to verify the correctness of the assembly
language programs including synchronization routines; however,
it does not attempt to detect faults in the hardware
implementation of the memory model, and does not scale to large
programs with thousands of instructions.

The idea of using a constraint graph to model relations between
memory operations has been used before in the context of
verifying ordering, or analyzing the performance of multi-
threaded programs [5][11][16].

Industrial design teams pay a great deal of attention to memory
system verification. They use random code generators
extensively for processor verification [2][12][13][19]. Most code
generators use a self-checking mechanism or an instruction-level
simulator to check for correct execution of such programs.
However, such checking usually does not work in the presence of
data races in multithreaded programs. Therefore, pseudo-random
code generators often have to either omit data races entirely, or
control the placement of such races carefully. The only error they
can check in the presence of data races is an obvious
manifestation of a problem like a processor hang, or an error
caught by a checker in the simulation environment. Verification
approaches which try to use extra design observability present in
simulations to reason about ordering and the outcome of data
races are usually tied intimately to design details; they are
complex to write, and often start with the assumption that the
microarchitecture is correct. They are not easily portable across
different processor microarchitectures, and cannot be used on
physical systems where such observability is not available. In
contrast, TSOtool reasons about correctness at the architectural
level, and scales easily across multiple microarchitectures and
multiprocessor environments both before and after silicon is
available.

Fig. 8: Analysis time for different procesor counts

12K 24K 36K 48K 60K

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

4 CPUs
8 CPUs
12 CPUs
16 CPUs

Total Memory Operations

R
un

 ti
m

e
in

 s
ec

on
ds

12K 24K 36K 48K 60K

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

4 shared loc

16 shared loc

64 shared loc

256 shared loc

Total Memory Operations

R
un

 ti
m

e
in

 S
ec

on
ds

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

7. Conclusions and Future Work
We have described TSOtool, a program which verifies a
machine's implementation of its supported memory consistency
model. This program is very effective in detecting bugs in the
design of complex microprocessors and multiprocessor systems.
Many of the bugs which TSOtool found would have otherwise
been extremely hard to find and debug, caused subtle crashes,
undermined the reliability of the system, and been expensive to
fix later.

To the best of our knowledge this is the first effort to
systematically verify the entire memory system of real
multiprocessor systems using the formalism of the memory
model. In future, we expect to reduce the cost of TSOtool
analysis further and make TSOtool failures easier to debug.

Acknowledgments
Shrenik Mehta and Mike Splain provided help in the initial stages
of TSOtool development. Aleksandr Gert and Rohit Kumar have
contributed substantially to this work. Hemant Gupta and Nitin
Gupta performed several experiments with TSOtool. We thank
several users of TSOtool who provided useful feedback.

References
[1] S. V. Adve and K. Gharachorloo, Shared Memory
Consistency Models: A Tutorial, Digital Western Research
Laboratory Technical Report, 1995

[2] B. Bentley, R. Gray, Validating The Intel Pentium-4
Processor, Intel Technology Journal, 1st Quarter 2001

[3] A.E. Condon and A.J. Hu, Automatable verification of
sequential consistency, In 13th Symposium on Parallel
Algorithms and Architectures, pages 113-121, ACM, 2001.

[4] A.E. Condon, M.D. Hill, M. Plakal, and D.J. Sorin, Using
Lamport Clocks to Reason About Relaxed Memory Models, In
Proceedings of the Fifth IEEE Symp. High-Performance
Computer Architecture, pp. 270-278, Jan. 1999.

[5] H.W. Cain, M.H. Lipasti and R. Nair, Constraing Graph
Analysis of Multithreaded Programs, In Proceedings of the 12the
International Conference on Parallel Architectures and
Compilation Techniques (PACT'03), Sept.-Oct. 2003.

[6] J.E. Cantin, M.H. Lipasti and J.E. Smith, The complexity of
Verifying Memory Coherence, in Proceedings of the fifteenth
annual ACM symposium on Parallel Algorithms and
Architectures, pp. 254-255, ACM, 2003.

[7] W.W. Collier, Reasoning About Parallel Architectures,
Prentice Hall, 1992.

[8] C. Gniady, B. Falsafi, and T. N. Vijaykumar, Is SC+ILP
=RC?, In Proceedings of the 26th Annual International
Symposium on Computer Architecture, 1999

[9] P. B. Gibbons and E. Korach, Testing Shared Memories, In
Siam Journal on Computing, pages 1208-1244, August 1997.

[10] M.D. Hill. Multiprocessors should support simple memory-
consistency models, IEEE Computer, pages 28-34, August 1998.

[11] A. Landin, E. Hagersten, and S. Haridi, Race-free
Interconnection Networks and Multiprocessor Consistency, In
Proceedings of the 18th Annual International Symposium on
Computer Architecture, 1991.

[12] J.M. Ludden et al, Functional verification of the POWER4
microprocessor and POWER4 multiprocessor systems,In IBM
Journal of Research and Development, 2002.

[13] S. Mehta et al, Verification of the UltraSPARC
Microprocessor, IEEE Compcon 95, March 1995.

[14] R. Nalumasu, R. Ghughal, A. Mokkedem, and G.
Gopalakrishnan, The `Test Model-checking' Approach to the
Verification of Formal Memory Models of Multiprocessors, In
Proceedings of Computer Aided 29 Verification, 10th
International Conference, pages 464--476, June 1998.

[15] S. Park and D.L. Dill., An executable specification and
verifier for relaxed memory order, IEEE Transactions on
Computers, 48(2), 1999.

[16] S. Qadeer, On the verification of memory models of shared-
memory multiprocessors, In Proceedings of the 12th International
Conference on Computer Aided Verification, 2000.

[17] P.S. Sindhu, J.M. Frailong and M. Cekleov, Formal
Specification of Memory Models, Xerox PARC Technical Report,
December 1991.

[18] Sun Microsystems, UltraSPARC-III User's Manual,
http://www.sun.com/processors/UltraSPARC-III, 2001.

[19] S. Taylor et al, Functional verification of a multiple-issue,
out-of-order superscalar Alpha processor: the Alpha 21264
Microprocessor, In Proceedings of the Design Automation
Conference, pages 638-643, 1998.

[20] D.L.Weaver, T. Germond, Editors, The SPARC Architecture
Version 9, Prentice Hall, 1994.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

