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ABSTRACT
When searching for a person in an online social network,
most contemporary networks return source-target paths,
ranked only by degrees of separation. Not only does this
fail to reflect social tie strength (how well two people know
one another), it also does not model asymmetry in social
relationships (i.e. just because one person pays attention
to another, it does not mean the latter will reciprocate).

We propose that search in social networks can be made
more effective by incorporating weighted and directed in-
fluence edges in the social graph, thus capturing both tie
strength and asymmetry. Formally, the influence a person
A has over person B is defined as the proportion of B’s
investments B makes on A.

We study two large real-world networks, DBLP (a computer
science bibliography network) and a network formed by one
month of Twitter retweet data. Our experiments show that
for these social networks, the best paths according to our
influence metric are not necessarily the shortest paths: a
longer path is better in 68% of searches in Twitter and 45%
of searches in DBLP. Furthermore, even when the best and
shortest path lengths are equal, we find that the best path
is often better than a random shortest path of the same
length by a significant margin.

1. INTRODUCTION
The popularity of online social networks has made them an
important resource for social searches, in which the goal is
to find a person, or a “chain” of people, who might pass on
a recommendation for a particular job, or introduction, to
a specific person. For example: Jack, who wants to work
at Google, might consult his LinkedIn network to see if
he knows anyone well-placed to recommend him. Or John,
who has a crush on Mary, might consult a network like Face-
book to see whether they have any friends in common who
could arrange an introduction. Contemporary social net-
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works, such as Facebook, LinkedIn and others, commonly
model social relationships as binary: two people are either
“friends” or they are not. As such, the social search algo-
rithms in these networks tend to return the shortest path
between source and the target. This paper explores the hy-
pothesis that social searches can be made more effective by
taking into consideration the influence a person has over
another, which is inherently asymmetric and has varying
strength. We conduct our studies in the context of global
social search, where we assume that all network information
is available to the search algorithm.

1.1 Strength of Ties
In real life, people maintain a large number of relationships
with varying tie strength: close friends, family, work col-
leagues, casual acquaintances, and so on. That weak ties
are extremely important in real-life social networks (e.g. in
finding jobs) has been well accepted by sociologists since the
1970s [4, 5]. Therefore, a network like LinkedIn loses infor-
mation when it asks users to accept links only with people
they know well and disregard invitations from others. In
spite of this recommendation, it is common social practice
for LinkedIn users to connect with people they know only
slightly. We argue that an important benefit of online so-
cial networks is precisely their capacity to capture ties of
varying types and strengths.

Degrees of separation are all we need when we ask how
two people are connected out of curiosity; Erdos number or
Bacon number are two well known examples of such queries.
In social searches where we wish to find the best way to get
to some target person, finding the shortest path is often
insufficient.

This problem should be apparent to anyone who has con-
ducted a search on the LinkedIn network to find a path
to a target person. Since LinkedIn treats all relationships
evenly, the search returns the shortest path to the tar-
get. This path tends to go through highly connected peo-
ple: typically those whose jobs involve some sort of pro-
fessional networking (e.g. recruiters). However, a longer
path through stronger ties may yield a superior result.
For example, consider the following 2 paths from A to B:
P1 = 〈A, C, D, B〉 and P2 = 〈A, E, B〉. If A and B are vir-
tually strangers to E, but C and D are close friends and are
relatives of A and B, respectively, then P1 is more likely to
yield an introduction of A to B than P2. Even when paths
are of the same length, some may be preferable to others;



however the search returns, in several cases, what appears
to be an unranked list of hundreds of paths. The problem
of selecting the right path is even worse when conducting a
search not for a specific person, but for a generic attribute
such as “what is the best route in my social network to
anyone employed at Twitter ?” This problem is easily ex-
trapolated to our examples given above and other environ-
ments. One example is matchmaking sites that attempt to
pair individuals based on an underlying social graph; such
a site could use models for relationship weights between in-
dividuals to derive the best way to introduce users to each
other.

1.2 Asymmetric Influence in Social Networks
In conducting a social search we have to consider, in addi-
tion to tie strength, relationship asymmetry. Let us illus-
trate asymmetry of relationships using a scenario in Twit-
ter. Consider two nodes: “Obama” and “Joe the Plumber”.
Joe likes to retweet Obama. In fact, he has retweeted
Obama 1,456 times! Obama, on the other hand, has never
referred to Joe in his tweets. Now, if Joe wanted an in-
troduction to an acquaintance of Obama’s, it might be a
mistake to go through Obama: he has no influence over
him. It would be easy for Obama, on the other hand, to
get Joe to introduce him to one of his friends as Obama has
high influence over Joe. In other words, if A retweets B, B
has influence over A. In addition, if Joe does not retweet
anybody else, than Obama has 100% influence over Joe;
whereas if Joe has a habit of retweeting everybody, then
the influence Obama has on Joe is proportionally smaller.

Given a social graph, we model the influence A has over
B as the fraction of B’s actions due to A. The influence
of a path in the social graph is correspondingly defined as
the product of the influences of its edges. If A has high
influence over B, then B is most likely to honor the request
to forward the message towards its eventual destination. In
global social search, therefore, it would be most effective to
route requests through the most influential path.

1.3 Contributions
In this paper, we make the following contributions: we de-
fine influence as an edge weight metric that is calculated
based on relative fractions of interaction between two nodes.
We define the “best” path between 2 people A and B as the
most influential : that which optimizes the chance of A’s
message being delivered to B. Positing that the most influ-
ential paths between two nodes are not always the shortest
paths, we conduct an experiment on two social networks
(DBLP and Twitter retweets) in order to compare the re-
lationship between path length and influence. We find that
the most influential paths are often not the shortest, sug-
gesting that the incorporation of edge weights may improve
the performance of global social search. Furthermore, this
approach is also useful in ranking paths of the same length.

The rest of this paper proceeds as follows. We first define
our influence metric in Section 2, followed by a model for
global social search in Section 3. We present our algorithm
for finding the most influential path in a network in Section
4. Next, we describe our experiments and results in Section
5, providing a broad discussion in Section 5.3. We compare

with prior work on social search and inducing edge weights
in Section 6 and conclude in Section 7.

2. INFLUENCE
Global social search can be viewed as a problem of routing
requests in a social network. Therefore, a natural optimiza-
tion is to find the path to the target along which one has the
most influence. As discussed above, the success of a search
lies in finding a path such that each node has reasonable
influence over the succeeding node.

2.1 Social Interactions
Social networks model several types of social interac-
tions, from daily communications (e-mail) to co-authorship
(DBLP) to professional acquaintances (LinkedIn). More-
over, interactions may be directed (Twitter, for example,
in which someone being followed may have no knowledge of
the follower) or undirected (co-authorship).

We model influence based on social interactions that re-
quire some kind of cost, or investment on behalf of the
people involved. As interaction involves an investment of
time and effort from participants, the number of interac-
tions is an informative measure of tie strength. The key
intuition behind this proposition is the reciprocity of in-
vestment and influence: if A invests time in B, then B
must have some influence over A. In addition to its intu-
itive appeal, interaction-based influence data already exists
in almost all online social networks. Examples of inter-
action data are Facebook Wall posts, and email messages
exchanged between two people.

We note that there are several other mechanisms of deriv-
ing an influence metric for social network edges. A sim-
ple heuristic that can be used when interaction data is not
available is to count the number of mutual friends that
A and B have. More complicated methods estimating tie
strength may be based on profile similarity, or detailed com-
parisons of a variety of social interactions [3, 13]. Similarly,
in trust networks, influence can possibly be derived from
trust metrics (if A trusts B, then B has influence over A.)

2.2 Asymmetry of Influence
Influence is often asymmetric: A has high influence on B
does not mean the reverse is true. Asymmetry may also
be present when interactions are undirected. Consider, for
example, a co-authorship network. Because advisors are
frequently co-authors on publications, the proportion of the
student’s publications that are shared with her advisor are
high; the advisor has high influence on the student. How-
ever, the professor has many students, and therefore the
proportion of the professor’s publications that are shared
with the student is low; this reflects the reality that the
student has comparatively lower influence on her advisor.
Thus, even though the interaction in this case is undirected
(or bidirectional), there is still an asymmetry in influence
between two collaborators.

2.3 Influential Ties
As mentioned above, a perhaps more intuitive way of
conceptualizing influence is as the complement of per-
sonal investment. A person distributes personal investment



amongst her acquaintances. For example, if person B in-
vests a lot of her time in person A, then A has high influence
over B.

We now develop a quantitative definition of influence. We
define the influence from A to B, Influence(A, B), as the
proportion of B’s investments on A. Let Invests(B, A) be
the investment B makes on A.

Influence(A, B) =
Invests(B, A)P
X Invests(B, X)

A non-directional interaction can simply be modeled as the
result of two investments, one in each direction.

The analogy between influence and investment carries over
well to real life. We have control over how we distribute
our investment. We have less control, however, over who
invest in us. As in real life, influence is a quality that must
be given by others.

The influence of an edge in a social graph always lies be-
tween 0 and 1. This enables two edges in the graph be
compared easily in the global search algorithm. Figure 1(a)
depicts an undirected graph showing the investments as
weights, and Figure 1(b) shows the same graph with edges
weighted by influence.

2.4 Influential Individuals
A person is influential if he or she has high influence on
many people. We define the influence of a node as the
sum of the influences the node has on others. That is, the
influence of a node A,

Influence(A) =
X
X

Influence(A, X)

As reported in Section 5, we use this definition to plot the
distribution of influence across different users in the net-
work.

3. MODEL FOR SOCIAL SEARCH
We model the social search problem as one of finding the
“strongest” path in a weighted and directed graph in which
nodes represent people, and edge weights, ranging from
[0, 1], represent directed influence between nodes. A high
influence from A to B corresponds with a high probabil-
ity that B will forward A’s message to the desired target,
whether that be the end goal or another intermediary along
the path. For a message to be routed along the chain of
nodes, it is required for each of the intermediate nodes to
participate. In addition, we also associate some penalty
with path length, by assigning a constant discount factor to
each link in the network. This factor dampens probabilities
that a message will be passed along an edge. Similar to the
game of “broken telephone”, the longer the path, the more
likely a message will be dropped. We define the influence
of a path to be the product of the influence of each edge on
the path, adjusted for the discount factor. We refer to the
final influence as the strength of the path and calculate it
as follows: for a path P of length |P | that contains edges

(a) Before inferring influence

(b) After inferring influence

Figure 1: This figure illustrates the results of al-
locating influence to the edges in a network with
undirected interactions, such as DBLP. An intu-
itive interpretation of this graph runs as follows:
imagine that node A is an adviser, and nodes B, C,
and D are her students. The edge weights in Figure
1(a) depict the number of co-authorships between
node pairs. In Figure 1(b) we see that the adviser
holds more influence over her students than her stu-
dents hold over her. Moreover, student D, who has
authored fewer papers than student C, is more in-
fluenced by student C because a larger proportion
of her total publications involve student C.



edges e1, e2, . . . , en, and a discount factor x, the strength
is:

S(P ) =
Y

D × Influence(ei), ei ∈ P.

Our goal is to find the path that maximizes this probability.
In our experiments, we set the discount factor D to 0.95.

As with edge influence, we note that there are several
other potential definitions of path strength; we have merely
picked one that is plausible and easy to model. One pos-
sibility might be to impose an incremental decay on edge
weight proportional to its distance from the source (that
is, the decay factor decreases with each hop). Going be-
yond tie strength, we could also label edges with types of
relationship and then factor influence based on the type
of query (e.g. prefer to propagate a professional inquiry
through current and former co-workers.) We do not deal
with incremental decay or edge labels in this work, but
note that they are natural extensions of our definition of
path strength above, which we chose for its simplicity and
intuitive appeal.

4. ALGORITHM: COMPUTING THE
STRONGEST PATH

We use Djikstra’s algorithm to compute the shortest path
between two nodes. To compute the strongest path between
two nodes, we make a natural adaptation to this algorithm.
Given specific source and target nodes and discount factor
D, we would like to find a path P from the source to the
target that maximizes:Y

D × Influence(ei), ei ∈ P

Therefore we would like to maximize the logarithm of this
metric: X

log(D) + log(Influence(ei)), ei ∈ P

and therefore to minimize

−
X

log(D) + log(Influence(ei)), ei ∈ P

which leads us to minimizeX
log(1/D) + log(1/Influence(ei)), ei ∈ P

Therefore given edge weights ei between A and B, we can
compute the strongest path by simply providing log(1/D)+
log(1/Influence(ei)) as the starting edge weights to the
shortest path algorithm.

5. EXPERIMENTS
We evaluate the benefit of incorporating influence weights
into global social search on two large networks: DBLP and
Twitter retweets. Our goal is to evaluate whether consider-
ing edge weights results in better paths than simply picking
one of the shortest paths. In each network, influence may be
inferred from interactions between individuals, as described
above. Both datasets are large, contain realistic social data
and provide a global view of the network, which is needed

for our quantitative evaluation of weighted paths. We de-
liberately chose these two networks for their representative
diversity: the DBLP data forms a dense network in which
undirected ties are typically precipitated from intense, real-
world social interaction. The Twitter dataset, on the other
hand, is directed and more sparse; furthermore, ties do not
necessarily represent real world social interaction1. Our ex-
pectation was that the use of such different networks in our
experiments would lead to richer feedback on our model as-
sumptions and structural properties of our influence metric.

5.1 DBLP Computer Science Bibliography
The DBLP dataset2 includes approximately 2.06 million
papers with 775,143 unique author names. We take the
social graph G = (V, E) where V is the set of all authors
and E = {(vi, vj) : i 6= j, vi, vj ∈ V and vi, vj are co-authors
on a paper}. Considering only the giant component reduces
this graph to approximately 1.78 million papers and 603,237
unique authors.

We use the number of papers on which both vi and vj are
co-authors as a measure of investment. To induce a di-
rected, influence-weighted graph, we create directed edges
between each connected pair of authors by computing the
proportion of shared papers between each pair relative to
the total interactions of each author with all others (as dis-
cussed in Section 2). That is, if Papers(vi, vj) is the number
of papers co-authored by vi and vj , then

Influence(vi, vj) =
Papers(vj , vi)P
vk

Papers(vj , vk)

Our resulting graph contains approximately 4.06 million
edges. Figure 2(a) depicts a histogram of the natural log
node influence distribution.

In using the DBLP dataset, we make the underlying as-
sumption that a large number of co-authorships between
two actors indicates that they have a strong tie. We note
that “weak” ties on DBLP are probably not all that weak:
writing a paper is a significant time investment after all! Of
course, a low weight on an influence edge does not neces-
sarily indicate weak social influence between the two actors
in an absolute sense; for example, two colleagues in non-
overlapping areas may know and respect each other without
having co-authored papers together. However, for experi-
mental purposes we restrict ourselves to the “DBLP world”
and base influence edge weights on co-authorship counts.

To evaluate the effectiveness of using influence in global
searches, we compute for each of the 500 randomly selected
source-destination pairs

• S(Pshort), the strength of the shortest path based on
the number of hops. Since there may be many paths
with the same shortest length, we pick a random path
from amongst all such paths, and

1In that people linked by a tie need not even know one
another.
2Available at http://dblp.uni-trier.de/xml/
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Figure 2: Log node influence in DBLP and Twitter

• S(Pstrong), the strength of the strongest path.
Strongest path is computed using the weights model
described in Section 4.

Table 1 compares the paths computed and their respective
strengths. The results are discussed in Section 5.3.

5.2 Twitter Retweets
Our Twitter dataset consists of 1 month’s worth of tweets
from Twitter. Considering only retweets yields a directed
graph, comprising approximately 2.4 million unique users
and 8.85 million directed edges. Retaining only the giant
component reduces this to 2.25 million unique users and
8.75 million directed edges. We assign influence weights
over the edges as follows: if Retweets(B, A) is the number
of times B retweeted A, then:

Influence(A, B) =
Retweets(B, A)P
X Retweets(B, X)

That is, influence is the proportion of interactions that
a node directs to another to all of her outgoing interac-
tions (as described in Section 2). Since some people never
retweet, they have no outgoing edges, and nobody has in-
fluence over them in this model. Using this model, a his-
togram of the log node influence distribution is shown in
Figure 2(b). The average influence a person has in total
is 0.6, with a high variance of 138.3. The maximum node
influence is 8414.9. Table 2 shows the results of a similar
experiment on Twitter retweets comparing the shortest and
strongest paths of 500 randomly selected source and target
pairs.

5.3 Discussion
The hypothesis that utilizing edge weights may well im-
prove global social search is reflected well by our results.
We discuss this here and – noting that these results are
preliminary – also discuss some limitations of our approach,
suggesting improvements for future work.

From Figure 2, we see that most nodes in both datasets
have influence below one, which is congruent with the ob-
servation that in real life influence is asymmetric. So a few
nodes are highly influential, and there are many nodes that
are influenced by others more than they influence anybody.
We see that a handful of nodes in DBLP are highly influen-
tial, but not nearly as influential as those in the tails of the
Twitter influence distribution. Indeed, some nodes in the
Twitter dataset have an extremely high influence (8414.9,
or about 10 on a natural log scale). The two nodes with
highest influence in this dataset are “revrunwisdom”, a reli-
gious leader who tweets religious and spiritual quotations,
and “tweetmeme”, which aggregates popular links on twit-
ter.

67.8% of the strongest paths in the Twitter graph, and 43%
of the best paths in the DBLP graph, are longer than the
corresponding shortest paths. In the Twitter dataset these
best, but longer, paths contain just over two hops more than
the corresponding shortest paths, on average. In the DBLP



All |Pstrong| > |Pshort| |Pshort| = |Pstrong|
Node Pairs 500 215 (43.0%) 285 (57.0%)
Avg. |Pshort| 6.5 6.6 6.5
Avg. |Pstrong| 7.0 7.8 6.5
Avg. improvement in in-

fluence (
S(Pstrong)

S(Pshort)
)

548 605 506

Table 1: Summary statistics for experiment results conducted on the DBLP dataset. S(Pstrong) and
S(Pshort) denote the strength of the strongest or shortest path, respectively. |Pstrong| and |Pshort| denotes
the length of the strongest or shortest path, respectively.

All |Pstrong| > |Pshort| |Pshort| = |Pstrong|
Node Pairs 500 339 (67.8%) 161 (32.2%)
Avg. |Pshort| 7.7 7.9 7.3
Avg. |Pstrong| 9.2 10.1 7.3
Avg. improvement in in-

fluence (
S(Pstrong)

S(Pshort)
)

35,081 30,360 45,021

Table 2: Summary statistics for experiment results conducted on the Twitter dataset. S(Pstrong) and
S(Pshort) denote the strength of the strongest or shortest path, respectively. |Pstrong| and |Pshort| denotes
the length of the strongest or shortest path, respectively.

dataset these best, but longer, paths contain, on average,
just over one hop more than the shortest possible path.

For the remaining 32.2% and 57% of the paths in the Twit-
ter and DBLP networks, respectively, the strongest and
shortest paths have the same length. As we choose the
shortest path randomly from the set of all possible short-
est paths, this does not mean that they are the same path.
Indeed, in the DBLP network, the strongest path is, on av-
erage, 506 times more influential than a random shortest
path. The corresponding statistic in the Twitter dataset
is 45,201 times as influential. The precise factors of im-
provement are not so important; the key takeaway here is
that weights can be used to select significantly better paths
in the network. In the case in which the strongest path is
longer than the shortest path, one or two extra hops seems
a small price to pay for an improvement in path influence.
And when there are many paths of the same length, the in-
fluence metric can be used to rank them and present them
in an order that is presumably more relevant to the user
than an unranked list.

We posit that the large discrepancy between the Twitter
and the DBLP datasets is due to their fundamentally dif-
ferent structure. The property of influence seems intrinsic
to a network such as Twitter, where interactions are driven
by hype and popularity. In a co-authorship network, how-
ever, influence is a consequence of contribution, and so is
more evenly distributed amongst nodes.

Our results also provide fodder for future model and experi-
mental design improvements. We have run our experiments
on two graphs, albeit very different ones. Running our ex-
periments on a wider range of datasets would give us a
broader understanding of the problem and solution spaces
of influence weights.

A final caveat, often noted in social network analysis, is that
tie strength in any one dataset may not be representative
of tie strength in real life; which itself can be interpreted in
a variety of subjective ways. For example, one may direct
tweets to colleagues at work much more often than to one’s
best friend back home. We believe, however, that proxies
for tie strengths provide useful information that unweighted
networks miss, and tie strengths often reflect the truth in a
particular “world” (e.g. the “Twitter world”, or the “DBLP
world”), where interactions can indicate better social paths
for interactions within that world.

6. RELATED WORK
Much work has focused on the problem of search in so-
cial networks, and especially on the problem of local social
search (that is, the search is conducted by nodes in the net-
work, and they do not have a global view of the network).
In a social search experiment, Dodds et al. asked people
to forward a message through acquaintances to target per-
sons they did not know [2]. They found that successful
social searches did not require hubs as crucial relay points,
but did rely heavily on professional ties; ties tended to be
medium to weak in strength. Adamic et al. simulate simi-
lar “small world” experiments using email data and online
social networks [1]. Both of these research branches are
based on prior work by Watts et al. [12], which argues for
social hierarchies as a framework for modeling social search.
A common theme in all of this research is the notion of en-
riching tie strength with information such as geographical
proximity, homophily etc. We are not the first to express
frustration with the use of binary ties for social search.

In terms of global social search, Aardvark3, a service that
connects people with specific questions to the people most

3www.vark.com



qualified, or most likely, to have an answer, internally em-
ploys a symmetric measure of affinity between users [6].
The affinity between users is calculated using a weighted
cosine similarity over a number of features, including: vo-
cabulary match, profile similarity, and social connectedness
in real life. Aardvark’s success is testimony to the efficacy of
routing social requests using edge weights in global social
search. Similarly, Facebook is reported to use an affinity
metric called EdgeRank to generate news feeds4; however,
it is not public how the affinity metric is computed.

There have been several efforts to infer edge weights in so-
cial graphs. A common and simple way of converting com-
munication frequency data into a binary edge weight is to
use a threshold (e.g. define an edge between A and B if
they have exchanged at least 5 messages) [8, 11]. Realistic
weighted network data has been obtained in the context of
mobile call graphs [10], though such detailed data is gen-
erally hard to come by. A step up from binary networks,
in signed networks, edges may be either positive, negative
or not present [9]. Other recent work has focused on in-
ducing relationship tie strength from social network meta-
data. Gilbert and Karahalios present a method for predict-
ing closeness from Facebook profile attributes, such as wall
posts, messages exchanged etc. [3] Xiang et al. present a
model for learning relationship strength based on commu-
nication activity and profile similarities in online networks
such as Facebook and LinkedIn [13].

Outside the domain of search, there has been work on dif-
fusion models in networks which employ measures of inter-
node influence. Some of this work employs influence mod-
els similar to ours, but uses it to study how viral effects
propagate over time [7]. It seems that many other network
analysis techniques and studies could effectively be adapted
for use with weighted, directed edges.

We find that generalized global social search has received
relative little research consideration in the past. However,
the inherent problems with binary ties has sparked healthy
research interest in estimating tie strength; a natural next
step is to develop social network analysis methods that in-
corporate these into social search and other problems.

7. CONCLUSION
In this paper, we posited that utilizing edge weights in the
problem of global social search could yield more effective
results than a search based on binary ties alone. Not only
do binary ties fail to capture relationship strength, but they
also do not model relationship asymmetry. We presented
influence as an asymmetric measure of tie strength between
two nodes, defining influence of person A on person B as
the proportional investment that B makes in A, and defined
a method of calculating the most influential path from a
source to a target node.

We conducted an experiment designed to measure the re-
lationship between path strength and path length on two
datasets: the DBLP paper co-authorship network and one
month’s worth of Twitter retweets. The results of our ex-
periment showed that in many cases, the most influential

4See Facebook F8 2010, Focus on Feed session.

path between two nodes is, on average, one or two hops
longer than the shortest path between those nodes. More-
over, for cases in which the most influential path has the
same length as the shortest path, the strongest path may
be much more effective than a random path. We therefore
conclude that incorporating edge weights into global social
search algorithms can be greatly beneficial to online social
networks.
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