
 
 
 
 
 

Searching for Good Low-Density Parity-Check 
Codes 

Theoretical and Practical Approaches 
 
 
 
 

A Thesis presented 

by 

Mihaela Enachescu 

to 

Computer Science 

in partial fulfillment of the honors requirements  

for the degree of 

Bachelor of Arts 

Harvard College 

Cambridge, Massachussets 

 

 

April 8, 2002 

 

 1



 
 
 

 
 

Abstract 
 

 
 
This work discusses the problem of designing codes with good performance, discussing 
both theoretical and practical aspects of this problem. We first present historical results 
from coding theory, by deriving lower and upper bounds for error-correcting codes and 
presenting one of the first theoretical constructions approaching these bounds. We then 
focus on low-density parity-check codes, which approach the lower bound we derive and 
have very efficient encoding and decoding schemes. We conclude by presenting our 
results on finding good short LDPC codes based on a heuristic method, based on the 
distribution of cycles in the underlying graphs representing the codes. 
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1. Introduction 
  
Communicating information is an essential process in today’s society. However, most 
means of data transmission involve imperfect channels that may corrupt part of the data. 
Coding theory is concerned with detecting and correcting in the most efficient way 
possible the errors that occur in the data transmission. The theoretical origins of coding 
theory are marked by Shannon’s 1948 paper. Recognized as “father of modern digital 
communications and information theory” [23], Shannon proved the existence of families 
of error-correcting codes that can perform with arbitrarily small probability of error, up to 
the rate given by the capacity of the channel [5]. He also showed the converse – that we 
cannot find codes that do better than the channel capacity. This provided an initial upper 
bound for the codes we can hope to find. 
 
Shannon’s Theorem pioneered the work on the theoretical bounds for codes. Gilbert and 
Varshamov found a very natural lower bound shortly after. This was the best bound 
known for 30 years [6], and it presents a challenge for code designers even today. We 
will derive and present this bound in chapter 2. Different methods were applied for 
deriving upper bounds. One of the most effective was the linear programming method 
that led to a series of upper bounds. This method and the McEllies upper bound—which 
was derived using it—are presented in section 2.2. One of the first families of codes that 
asymptotically met the Gilbert-Varhamov lower bound were algebraic codes. One 
example, the Justesen codes, are discussed in detail in section 2.3. While these codes are 
a very elegant theoretical construction, their lack of an efficient encoding algorithm 
renders them impractical.  
 
The initial focus was on discovering codes that get arbitrarily close to the capacity of the 
channel, and which have polynomial time encoding and decoding algorithms. The most 
popular example is the family of Reed-Solomon (RS) codes that provide optimal 
information recovery for sufficiently large block lengths, which were discovered and 
studied in the 1960s. However, for practical values of the block length, their best 
encoding and decoding algorithms are quadratic in time. Although algorithms with lower 
asymptotic bounds were discovered and applied to RS codes, the overhead of the constant 
factor hidden by the big-O notation makes them less efficient for most practical block 
lengths [7]. 
 
The necessity of finding codes with more efficient encoding and decoding schemes has 
prompted a great deal of attention on finding good low-density parity-check (LDPC) 
codes. These were first introduced by Gallager [3] in 1963, forgotten, and then 
rediscovered three decades later. We talk about these codes in the remaining two 
chapters. In chapter 3 we present some general results and algorithms. These codes have 
very efficient encoding and decoding algorithms (due to the low density requirement) for 
a variety of channels. A number of techniques have been developed for constructing 
capacity-approaching LDPC codes of large (but still practical, for some applications) 
block lengths [7], [16], [20], [21]. The general idea is to analyze the performance of 
ensembles of codes, and find ones with good average performance. Then, based on 
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concentration results, which were proven to hold for sufficiently large block lengths [20], 
random codes are ensured to have good performance as well. This is because the 
performance is concentrated around the average performance, and hence a good code of 
large enough length can be generated with high probability by randomly selecting any 
code in the ensemble. 
 
However, the concentration results are not useful for small block lengths. In fact, 
empirical results show that for small block lengths (under 10,000), the variations in 
performance can be quite significant [20]. This variation motivated Mao and 
Banihashemi to introduce a heuristic method for comparing codes based on the average 
value of their cycle distribution [12], [13]. The precise definition and the way to 
efficiently compute this cycle distribution are presented in chapter 4. The method was 
successfully applied for the binary symmetric channel and a message-passing decoding. 
In this work we apply this method to the binary erasure channel, in order to search for 
good low-density parity-check codes of small block lengths. Note that a given ensemble 
of codes contains a large number of codes even for small block lengths. While evaluating 
the performance for all the codes in order to select the best ones is a more accurate mean 
of classifying the codes, it is too inefficient, and thus not a practical way of searching the 
large space of possible codes. Prior to Mao’s and Banihashemi’s work very little progress 
was made in the direction of developing an efficient and close to accurate method of 
evaluating and selecting small block lengths codes. Nevertheless, short codes are very 
important for applications that require the exchange of short and frequent messages, 
which need to be encoded through such codes to avoid unnecessary overheads and 
delays. The bloom of such applications in the context of digital and satellite 
communication, some of which need to transmit data through erasure channels, motivates 
our idea to apply these authors’ method for finding good codes to the erasure channel. 
 
The design and implementation of the testing system, as well as the tests we run and the 
results are presented in chapter 4. While the evaluation of codes seems to be useful in the 
case of regular-degree codes, the results are less conclusive for the irregular codes tested. 
The results suggest that the method applies best to the binary symmetric channel and its 
corresponding algorithm, but it can also be used with some success for the erasure 
channel and the iterative decoding algorithm we implemented in our simulations. 
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2. Capabilities of codes 
 
This chapter explores the question of what we can expect from codes. We give a lower 
and an upper bound on the information rate of codes. We discuss the problem of 
constructing and representing a code efficiently, and give one of the first examples of 
codes that have a nice algebraic representation and good asymptotic properties: the 
Justesen code. However, while the underlying idea of this code is very elegant, the 
construction is based on the existence of a primitive element, which cannot be efficiently 
discovered, and thus this code remains hard to construct in general. 
 
Before proceeding with the derivation of the bounds, we will first introduce some 
notations and basic mathematical results that will be used in the paper. We will use Q to 
denote the alphabet, containing q symbols, which we use to code the information. A 
block code C of length n is a subset of Qn. Each element in C is a codeword, while the 
elements of Qn are called words. The sender always sends the message using the 
codewords. At the other end, a non-codeword may be received instead of the original 
codeword, and the receiver needs to decode it. The decoding is usually done by 
computing the most likely origin. For the channel models considered here (the 
memoryless symmetric binary-input channels) the closest codeword is the one at smallest 
Hamming distance, i.e. with the smallest number of digits differing from the original 
received word. More formally, we can write the Hamming-distance as 

. We define the minimum distance d of a code C as |},1:{|),( ii yxniiyxd ≠≤≤=
},,:),(min{ yxCyCxyxdd ≠∈∈= . If C is a length n code, with minimum distance d, 

and M codewords, we call C a (n, M, d) code. Note that if d = 2e+1, then using C the 
receiver can successfully decode from e or fewer errors. 
 
One of the most important properties of a code C is its information rate R defined as: 

n
M

R qlog
=  

Here q is the size of the alphabet Q, and so logq M represents the length of a code 
containing no redundant information that would be sufficient to encode all the M 
codewords, while n is the actual length. When talking about families of codes, another 

important parameter is the relative minimum distance δ = 
n
d . When the communication is 

performed through a channel with given probability of error p, the expected number of 
errors is np, increasing proportionally with n. Thus, the minimum distance has to increase 
proportionally with n as well, in order to maintain the same error-correcting capabilities. 
In order to maximize the rate of information of a code we want to maximize M, the 
number of codewords in C. For given n and d, we denote by  the maximum 
value of M, for which an (n, M, d) code exists. It is then useful to consider the 
information rate as a function of the parameter δ, and we define the following: 

),( dnAq
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n

nnAqq

n

])[,(log
suplim)(

δ
δα

∞→
=    (2.1.1) 

 
The bounds we will derive in the next two sections are given in terms of the above 
parameter. 
 
 
2.1 The Gilbert-Varshamov Bound 
 
Discovered in 1952, the Gilbert-Varshamov bound was the best bound for 30 years. It is 
based on the basic fact that no two codewords can be at distance d-1 or less from each 
other. Thus, each codeword has a ball around it of size d-1 (according to the metric 
defined by the Hamming distance) which is free of other codewords. We will use the 
notation  to denote the cardinality of the ball of radius r in Q),( rnVq

n. The number of 
words in that ball is then given by the sum of all words at distance less or equal to r from 
the center. Now, the number of words y at distance exactly i from a given word x is: 

, so . In the worst case the balls around the codewords 

of size d-1 are non-overlapping in Q

iq
i
n

)1( −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ i
r

i
q q

i
n

rnV )1(),(
0

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑

=
n. Thus, a code of length n and distance d could have 

at least 
)1,( −dnV

q

q

n

 codewords, otherwise we could find a non-codeword at distance at 

least d of all other codeword and we could add it to the code C . In fact, we can show that 
there exist linear codes that achieve the Gilbert-Varshamov bound.  
 
Definition 2.1.1 A linear code is a code with the property that the sum of any two 
codewords is a codeword, so the code forms a linear subspace of Qn, of size k= logq M. 
Such a code is denoted as an [n,k,d]-code, where d is the distance. 
 
Because of the linearity, for such codes the minimum distance d equals the minimum 
weight of the non-zero codewords. To show that we can get linear codes achieving the 
Gilbert bound it is enough to prove the following result: 
 
Theorem 2.1.1 [18] If C is a linear code of size n, minimum distance d, and, 

)1,(
||

−
<

dnV
qC

q

n

 then there is a linear code C’ of size n, distance d, containing 

C, such that |C’|>|C|. 
 
Proof  The ball of radius d-1 around the codewords in C do not cover the space Qn, so 
there exist some word v not in C, who is in neither of those balls, i.e. it is at distance at 
least d from all codewords in C. Then we define C’ to be all codewords of the form 

, where  Taking a = 0 we can see that all codewords in C are also in 
C’. Taking a=-1 and u = 0, we get 

avu − ., QaCu ∈∈
'Cv∈ , and by construction Cv∉ . So the size and 

containment requirements of the theorem are satisfied. It is easy to observe that, because 
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C is linear, C’ is linear as well. We need to show that C’ still has minimum distance d. It 
is enough to show that the minimum weight of avu − is d. When a=0, this is true because 

 and C has minimum distance d. When ,Cu∈ ,0≠a  a has a (non-zero) inverse  Then  
we have: wt( ) = wt( )=wt( =d(  v). Since C is linear 

, and by construction, v is at distance at least d from it. Thus, we can conclude 
that wt

.1−a
avu − )(1 avua −− )1 vua −− ,1ua−

Cua ∈−1

.,,)( audavu ∀≥− So C’ has all the desired properties. 
 
 
Our goal is to derive an expression for )(δα  using the simple Gilbert bound, and obtain 
the asymptotic version of the Gilbert bound. This bound turns out to be easily expressed 
in terms of the q-ary entropy function . )(xH q

 
Definition 2.1.2  The q-ary entropy function is the function:  
 

)(xH q = )1(log)1(log)1(log xxxxqx qqq −−−−− . 
 

Theorem 2.1.2 (The Asymptotic Gilbert bound, 1952) [18] For all 
q

q 1−
≤δ , there is a 

family of codes Cn of size n, relative minimum distance converging to δ such that 
)(1)( δδα qH−→ . 

 
Proof  Let d  be the largest integer less than δn . From the Gilbert bound, we know there 

is a code, call it Cn with rate 
n

dnVn
n

dnV
q

n
M

R qqq

n

q
q )1,(log)1,(

log
log −−

=
−

==  

n
dnVqq )1,(log

1
−

−=  

We want to show that )(1suplim δq
n

HR −=
∞→

, or, by simplifying the constant factor we 

want to show that )(
)1,(log

lim δq
qq

n
H

n
dnV

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∞→

. To clarify our explanation, we will use 

L to denote the limit on the left-hand side from now on.  

We saw that , so in particular . Taking the 

log of both sides, and dividing by n we get a lower bound for L, namely 

i
r

i
q q

i
n

rnV )1(),(
0

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑

=

r
q q

r
n

rnV )1(),( −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<

n

q
r
n r

q

n

)1(log
lim

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∞→
.  We can simplify the above expression by using Stirling’s formula 

(in the log form), which we will write for simplicity without the subscript q as the base of 
the logs: 
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)!log(
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)2log()log(
2
1
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1)!log( nnnn
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n ≤⎟
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⎞

⎜
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⎛+−⎟

⎠
⎞

⎜
⎝
⎛ +≤−

π  

 
Since we divide by n and take the limit we can ignore the factors: 1/12n, 1/2log(n) and 
log(2π)/2, when we apply the above inequalities to log(n!), log(r!) and log((n-r)!) 
We get that: 

n
rnrnrnrrrnnnqr

n

q
r
n

n

r
q

n

−+−−−+−−+−
≥

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∞→∞→

)log()(log)log()1log(lim
)1(log

lim  

We now use the fact that δnr → , and so all terms on the numerator have a factor n, 
which we simplify with the denominator to get )(δqH on the right hand side of the above 
equation. After we find that L is bounded below by the entropy function at δ, it is also 
easy to show that )1,(log)( −≥ dnVnH qqq δ , by playing with the Binomial expansion of 

, so in the limit the entropy function is an upper bound as well as a lower 
bound for L. Thus we get that 

n

))1(( δδ −+
)(δqHL = , which concludes the proof of Theorem 2.1.2. 

 
 
2.2 The McEliece Bound 
 
In the previous section we presented the fundamental lower bound in coding theory, 
showing what a random code might achieve. Now, we will present an upper bound as 
well. This bound was derived using the linear programming method, which was first 
introduced by Delsarte in 1973 [17]. McEliece adopts the method and applies it to 
different topics in coding theory [15]. In particular, together with Rodermich, Rumsey, 
and Welch, he comes up in 1977 with the best upper bound known up to present.  
 
Linear programming is an efficient tool, which gives the optimal result for a linear 
function of n variables, subject to any number of linear constraints. For codes, the linear 
constrains are the Delsarte-MacWilliams inequalities, that have as coefficients values of 
the Krawtchouk polynomials. Let us first state two relevant definitions before stating the 
theorem: 
 
Definition 2.2.1 The Krawtchouk polynomial  is the coefficient of y)(iK j

j in the 

polynomial .  ini yy −+− )1()1(
 
Definition 2.2.2 The average number of codewords at distance i from a given word is 
given by 

|},,),(:),{(|1 CvCuivudvu
M

ai ∈∈==  
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Theorem 2.2.1 (The Delsarte-MacWilliams inequalities) [5] If  is the distance 
distribution of the code C of length n, then for all 

n
iia 0)( =

nk ≤≤0 we have: 

∑
=

≥
n

i
ki iKa

0
0)(  

 
Proof  Let <x, y> denote the inner product of x, y, elements of Qn. Fix x to be a certain 
word of weight i. Our first claim is that ∑

=
∈

>< =

kywt
Qy

k
yx

n

iK
)(

, )(ω , where ω is a primitive qth 

root of unity in the complex numbers. We can prove this by a simple counting argument: 
let be the i non-zero positions in x. Now choose k (ordered) positions that 
overlap with exactly j of the ’s and let D be the set of all words that are non-zero in 

those positions. There are choices for D, and for each choice we have: 

iccc xxx ...,
21

sc

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
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⎝

⎛
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in

j
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yxj

l Qy
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yx

Dy
position

sth
position

kthh

k

l

yx qq
lhlhlh

k

−

= ∈

−

∈ =

>< −−=−== ∏ ∑∑ ∑ ∑ ∏ )1()1()1(...
1 }0{\1, , 1

,,

1

ωωω   

In the above, the second product is taken over the jth indices at which both x and y are 

non-zero. Overall, we obtain exactly , which completes the 

proof of our first claim. We then use this claim to conclude the proof of our theorem by 
observing that: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝
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0)(
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i
iyxd

Cyx
kzwt

Qz Cx
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kzwt
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Now we can define a linear program that maximizes , with the following 

constraints: i) ii) 

∑
=

n

i
ia

0

,10 =a 11,0 −≤≤∀= dja j iii) nidai ≤≤∀≥ ,0 , and last but not least 

iv)  (true by the above theorem).     (2.2.0)  ∑
=

≥
n

i
ki iKa

0
0)(

 
All (n, M, d)-codes have to satisfy the constraints of this linear program, but some 
solution to the problem above might not have a valid code corresponding to it. If a code 

exists, then by definition, M = ∑ so the result of the maximization above provides an 

upper limit for . However, since we lack a general formula for the result of a 
linear program, we need to do some more manipulations in order to get a result for our 
upper bound. We will use the duality principle to transform the problem into a 
minimization problem. We get the following: 

=

n

i
ia

0

),( dnAq
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Theorem 2.2.3 [4] Let  be a polynomial with ∑
=

+=
n

k
kk xKx

1

)(1)( βγ nkk ≤≤∀≥ 1,0β , 

and such that njdj ≤≤∀≤ ,0)(γ , where d and n are fixed. Then ).0(),( γ≤dnAq  
 
 
Proof Let  be the distance distribution of a (n,M,d)-code. As we saw, they must 
satisfy the conditions of the initial linear program. Combining i), ii) and iv) we get the 

following condition of the ’s: .    (2.2.1) 

n
iia 0)( =

)( ia 0)()0( ≥+∑
=

iKaK
n

di
kik

Let us add )(iaiγ  for all nid ≤≤ . Since the ’s are non-negative, from the 
hypothesis of the theorem we get that the sum of these terms is less or equal to 0. Using 

the definition of 

)( ia

γ , we get that , or 0))(1(
1

≤+∑ ∑
= =

n

di

n

k
kki iKa β

1)0())0(())(
1

)1.3(

1
−=−−≤−≤ ∑∑ ∑ ∑

== = =

γββ
n

k
kk

from
n

di

n

k
k

n

di
iki KiKaa     (2.2.2) 

Since , from the conditions i) and ii) in (3.0), we get that γ(0) is an 

upper bound for  [5]. 

∑
=

+=
n

di
iq adnA 1),(

),( dnAq

 

In their 1977 paper, McEliece et al discover that 
xa

xx
−

=
2* ))(()( γγ  for  satisfies the  da ≤

4 conditions of Theorem 2.2.3, where ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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* )()(
1

)(2)(γ [14]. Using 

this function they derived the following bound for )(δα  for Q=F2: 
       (2.2.4) ))22()(1(min)( 22

210
δδδα

δ
++−+≤

−≤≤
uugug

u

In the above ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

2
11)( 2

xHxg , again the entropy function which played a very 

important role in coding theory from the very beginning1. For u=0, we recover on the 
right-hand side of (2.2.4) an earlier bound due to Elias. Hence McEliece’s result is an 
improvement of Elias’s bound. For 2/1273.0 ≤≤ δ , the minimum in (2.2.4) is achieved 
for u=1-2δ. 
 
For a general field Q, the MRRW bound equals ))(( δγ qqH , where 

                                                           
1 Shannon’s definition of the capacity of a channel is 1-Hq(x), and thus his 1948 theorem involves the 
entropy function, which appears in the GV bound as well (see section 2). 
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2.3 An example: the Justesen’s Codes 
 
The lower bound given by Gilbert, while very natural and elegant, does not provide a 
practical construction to finding a good code. A code discovered by randomly selecting 
its codewords until we get the tightest packing possible, would likely lack structure, and 
could only be represented by a table. The number of possible codewords gets very large 
even for relatively small block lengths. For example, for a block length equal to 500 and 
a linear code with information rate 1/5, the linear subspace is of dimension 100, so there  
are possible codewords. Thus it becomes impractical to construct such a table, and 
even to list the codewords. 

1002

 
Some mathematical structure to enable nice representation and an efficient decoding and 
encoding scheme is necessary. The first emphasis was to find codes whose basic structure 
is algebraic. Mathematicians started searching for good codes, for which both δ and R are 
bound away from zero. By this definition, a code may be good even if it is far from 
meeting the asymptotic version of the basic Gilbert-Varshamov bound presented in 
section 2. In fact, the Gilbert-Varshamov bound was the best bound known for 30 years, 
until 1982 when it was exceeded by the Goppa codes. The Goppa codes are algebraic 
codes with very good asymptotic behavior (i.e. are able to get arbitrarily close to the 
information rate given by Shannon's Theorem). However, they are not yet very practical 
because of the relative high-cost and complexity of their decoding algorithms [6]. 
 
In this section we will present Justesen’s Codes, as an example of good codes with a 
simple algebraic definition. They were defined in the 1970s, almost a decade before the 
Goppa codes, and represented a major advancement in coding theory at the time, 
although their definition is non-constructive and also the bound they achieve is below the 
GV bound [5]. 
 
Justesen’s Codes are a type of concatenated codes, which are, as the name suggests, 
constructed from two codes: the inner-code C1, which is the alphabet of the outer code 
C2. More formally: 
 
Definition 2.3.1 The concatenated code C is given by: 
      

})(,),...,(|))(),...,({( 21010 iiNN CbaCbbbaba ∈∈−−   (2.3.1) 
 
where is a one-to-one mapping.  1},..,1{: Cna →
 
From the above definition, if C1 is an (n, m, d) q-ary code, and C2 is an (N, M, D) Q-ary 
code with then C is a (nN, M, D) q-ary code. ,|| mQ ≤
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Justesen’s construction uses a generalization of the basic definition for concatenated 
codes. He uses different inner codes on the different positions of the outer code. He 
shows that we can construct codes with relative minimum distance converging to a non-
zero value, and with non-zero asymptotic rates bounded by the so-called Justesen bound. 
 
Theorem 2.3.2 For any code rate R, there exist families of concatenated (nN, RnN, D) 
binary codes CN, with which meet the Justesen bound ∞→N

    )1()1(max 1
2

1
2
1

rH
r
RR

r
−−≥ −

<≤
         (2.3.2) 

Proof [2] Let )
2
1,max(Rr ≥ , and take ⎣ ⎦nrk = . Now construct a (N, kK, d) code C, 

where ,12 −= kN ⎥⎦
⎥

⎢⎣
⎢=

r
NRK , and  as follows:  Kd k −= 2

1. Pick first the outer code CRS, a (N, K, d) Reed-Solomon code2 over an alphabet of size 
2k (note that the given properties are valid RS parameters).  

2. Pick a primitive element α of , and construct the following N linear codes: 

, where we view the elements of as binary 
strings of length 2

kF2

NjFbbbW k
j

j <≤∈= 0},|),{( 2α kF2
k. These (2k, 2k, 2) codes, of rate ½ are also known as the 

Wolzencraft set or randomly shifted codes [2].  
3. Construct the inner codes (call them ) by deleting the last 2k-n digits in ’s.  jI jW
4. Our code is now obtained by mapping a word in CRS to a word in C, using the ith 

inner code for encoding the ith letter of the Reed-Solomon codeword. 
 
We want to derive a bound for D, the minimum distance of the resulting code We want to 
derive a bound for D, the minimum distance of the resulting code C. We make the 
following observations: 
 
i) Because of the minimum distance d, every non-zero codeword c in CRS has weight at 
least d, so there are at least d non-zero positions ci in c. 
ii) If we fix the codeword c, and look at the non-zero s, then the length 2jc k s 

are all distinct, either because 

),( j
j

j cc α

ljkj cc ≠ , or because , for the same cj
j

j
j cc lk αα ≠ j.  

iii) From ii), after puncturing in 2k-n positions, there are at most 22k-n pre-images for a 
given , and each of the pre-images appear at most one, so there are at most 2)( jj cm 2k-n 
repetitions of a given substring in a codeword.  )( jj cm
Using the above, we can see that the difference between two codewords contains a 

certain substring at most 22k-n times, so the minimum distance D is at least ∑
⎥⎦
⎥

⎢⎣
⎢

=

−
−nk

D

i
i

nk w
22

0

22 , 

                                                           
2 Reed-Solomon codes encode a message by creating a polynomial having the message symbols as its 
coefficients, and sending the values of the polynomial at various points (as many as the block length of the 
code). 
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where the wi are the least weights possible. Let us introduce the following notation: 

⎥⎦
⎥

⎢⎣
⎢= −nk

DL 22
 and denote by S the sum of the L weights wi . 

 

As , ∞→n ⎟
⎠
⎞

⎜
⎝
⎛ −→

r
RD k 12 , so ⎟

⎠
⎞

⎜
⎝
⎛ −→ −

r
RL kn 12 . Since there are binary strings of 

weight , by a basic property of the entropy function

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
n

i 3 we know that , and 

taking 

)(

0

2 λ
λ

nH
n

i i
n

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

⎣ ⎦nrnHnt 2
1 log)1( −−== −λ , it is easy to show that the number of words of 

weight less or equal to  is  therefore almost all of the weights in S are at least t ( )Lo
λnt = . Thus, asymptotically, we have LnS λf , and we get: 

     kkn

r
RrHnLnD 2)1))(1((2 1 −−≈ −−λf .   (2.3.3) 

But the length of the Justesen code is , and we can conclude that the 
relative minimum distance satisfies (2.3.2).  

)12( −= knnN

 
 
Justesen’s idea of building concatenated codes with good asymptotic behavior was 
extended later, by Zybalov, in 1982, leading to better lower bounds, which remained 
however below the Gilbert-Varshamov bound [2]. 
 
 

                                                           
3 See [1], Chapter 1 on Mathematical Preliminaries, p. 20-21. 
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3. Low-Density Parity-Check Codes 
  
The emphasis in the earlier years of coding theory was on codes whose basic structure 
was algebraic. A different approach, more difficult to evaluate at the time, was the use of 
random codes. Shannon’s proof of the capacity of a noisy channel, as well as many 
similar fundamental results in coding theory were derived by analyzing the average 
properties of a large class of codes. Low-density parity-check codes are based on the 
intuition that the best of several codes chosen at random from an ensemble of codes will 
have properties at least as good as the average ones. The crucial innovation was 
Gallager’s introduction of low complexity iterative decoding algorithms, which can 
decode very close to the channel capacity. LDPC codes can be used for a variety of 
channels, and recently, the best LDPC code of length one million achieved a bit-error 
probability that was clearly surpassing the other known codes for the binary-input 
additive white Gaussian channel [21]. Despite their very attractive properties, LDPC 
codes were forgotten for three decades, and rediscovered recently. One practical issue, 
that remained open for a period of time, was the encoding costs. Currently, however, 
several encoding techniques have been proposed for LDPC codes that lead to linear or 
nearly linear encoding [22], [7]. In this chapter we will present the capabilities of LDPC 
codes, efficient encoding algorithms, some decoding algorithms for the binary-erasure 
channel and the binary-symmetric channel, as well as concentration results that ensure 
that random LDPC codes of sufficiently large block length come extremely close to 
capacity on many channels. 
 
The binary-symmetric channel is a channel for which both the input and the output are  
sequences of the binary digits 0 and 1. The channel is memoryless, meaning that for 
every input the probability that the output digit is switched is p, and the probability that 
the output is the same is . The channel is entirely specified by this crossover 
probability. 

p−1

 
The binary erasure channel has the same input as the binary-symmetric channel, but the 
output can be either 0, 1, or ? (the erasure symbol). The input never gets flipped but, with 
some fixed probability p, it can get erased, meaning the corresponding output is? with 
that probability, or the same as the input with probability p−1 . 
 
Before proceeding, some general remarks about LDPC codes: LDPC codes are a special 
type of linear codes (which were defined in section 2.1). One way to describe a linear 
code is to give its generator matrix, whose rows are codewords that generate all other 
possible codewords. A code of a certain block length n over a finite field forms a linear 
subspace. If the dimension of this subspace is k, then there are k linearly independent 
codewords (rows in the matrix) that can generate this subspace, so the generator matrix is 
a  matrix over . An equivalent, more useful way (for decoding purposes 
especially) is to represent the code using its parity-check matrix, defined so that it returns 
the zero vector when multiplied by any codeword in the code it specifies. For LDPC 
codes the parity check matrix also satisfies a certain sparsity condition, in that only a 
certain fraction of the entries are non-zero. This condition might be requiring the matrix 

qF

nk × qF
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to have a certain number of 1’s per column or row. A matrix satisfying the given 
constraints is then selected at random by a process which we discuss in more detail 
below. 
 
Example 1 [Parity-Check Matrix of a code of length 12] 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

100
111
110
011
000
001

111
000
010
111
000
101

010
000
101
100
111
011

100
111
001
000
111
010

H  

 
As stated above, the code represented by the above matrix is formed of all codewords x 
satisfying .         (*) TTHx 0=
 
When describing and analyzing the different algorithms for encoding and decoding, it is 
generally useful to look at an LDPC code as a bipartite graph with the message nodes that 
represent rows in the parity-check matrix, and the check nodes on the left representing 
the rows. A check node implies a dependence relation on some of the message nodes (see 
figure 1). The dependence can be extracted from the parity check matrix. Edges connect 
the check nodes to the message nodes that they depend on. In the above example we 
would have 12 variable nodes (one per column) and 6 check nodes (one per row). A 
check node represents the constraint given by the corresponding row of the matrix, 
namely that the sum of the variable nodes corresponding to non-zero entries is 0. In the 
bipartite graph we connect these variable nodes with the corresponding check node. The 
number of non-zero entries in the row is the number of connections of the corresponding 
check node. Because the matrix is sparse, with a linear fraction of non-zero entries, the 
resulting bipartite graph contains a number of edges, which is a linear (instead of a 
possibly quadratic) factor of the number of nodes n. This allows for linear time encoding 
and decoding algorithms, which, as we mentioned in the introduction, is a great practical 
advantage of the LDPC codes. Note that the condition of sparsity is an overall 
requirement, which allows for a high degree for a given node (corresponding to a high 
number of 1’s on a given row/column in the parity-check matrix) as long as the other 
nodes have low degrees to make up for the high degrees of a few other nodes. 
 
If the number of 1’s in the same for each column and for each row, then the code is 
regular. Regular codes were the focus of the first studies, by both Gallager, and later by 
MacKay and Neal [6] and Wiberg[25], who independently rediscovered LDPC codes. 
However, the initial attraction to regular designs proved to be misleading. In fact, the best 
performance codes tend to be of irregular forms, with multiple degree values on the right 
and left as shown by Luby, Mitzenmacher, Shokrollahi, and Spielman [7]. The 
underlying degree distribution tends to have a great influence on the performance of the 
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codes. For large enough block lengths, finding optimal degree sequences4 plays a major 
role in the search for good codes. 
 
Once the degree sequence is specified, we can construct a random code with that degree 
sequence by pairing up the “edge slots” on the left with the “edge slots” on the right in a 
random manner. Each vertex would have a number of edge slots corresponding to its 
degree. For example, in figure 1, the first message node  has degree 3 since there are 3 
edge slots associated with it; similarly has degree 4, and  degree 5. 

1x

2x nx
 
 
 
    Variable nodes    Check Nodes 
 
     x1
           c1 
 
 
     x2
 

…                              … 
 
     xn                                                                             cm
 
 
 

Figure 1. The edge slots on the 
left (corresponding to different 
variable nodes) connect to the 
edge slots on the right (check 
nodes). In the figure, one of the 
edge slots corresponding to x1 
connects to an edge slot of cm. 
Similarly x2 connects to c1. The 
value of c1 is the check-sum of 
the five variable nodes that 
would connect to it, which is 
always 0 by (*). 

 
 
 
3.1 Asymptotic capabilities of LDPC Codes 
 
Gallager showed that, for sufficiently large block lengths, most codes have minimum 
relative distance close to the average. His analysis focuses on codes that are regular. 
Depending on the specific parameters of the codes, namely the left and right degrees, the 
codes have relative minimum distance approaching that given by the Gilbert bound 
presented in the previous chapter as one of the fundamental bounds that good families of 
codes could achieve. The analysis works for a variety of binary-symmetric channels, in 
particular BSC. Since the Gilbert bound equals the capacity of the channel, this means 
that LDPC codes have nearly ideal asymptotic performance. 
 
The proof for low-density parity-check codes is similar to that for the general ensemble 
of parity-check codes of a given rate R, with some supplementary analysis relating to the 
specific sparsity condition considered. 
 
                                                           
4 A degree sequence specifies the fraction of edges connected to nodes of each degree both on the right and 
on the left. 
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A code of block length n, with rate R, has a fraction of R−1 dependent nodes, which 
gives the fraction of dependent relations the nodes would satisfy, and thus the fraction of 
check nodes (rows in the parity-check matrix). Consider the ensemble of codes 
determined by the parity-check matrices with dimensions nRn ×− )1(  and 0 and 1 entries, 
each digit having the same probability for a given entry. This is essentially the ensemble 
of codes of rate R, except that some codes may have a rate slightly higher, since the rows 
are not necessarily linearly independent. However, for the sake of simplicity, in the 
following discussion we assume that the rate is exactly R. Under this assumption, we 
analyze the relative minimum distance of this ensemble. 
 
Let us define the distance function of a parity-check code to be the number of codewords 
in the code of weight l and denote it by . Since these codes are linear, the minimum 
distance D of a code is the same as the smallest distance from the all-zero codeword. 
Note that 

)(lW

0  is always part of the code, because it satisfies (*) for any party-check matrix 
H. Thus we can express D in terms of , namely as the smallest value such that 

. The goal is to have a large D, which would give a code with high error-
detection and error-correction capabilities. 

)(lW 0>l
0)( ≠lW

 
Theorem 3.1.1 Define )(lW  to be the average number of codewords of weight l in the 
ensemble of codes of length n and rate R defined above. Then, for , 0>l
 

2ln)1()()1(

)1(2
12)( RnnHRn e

nl
n

lW −−−−

−
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= λ

λλπ
   (3.1.1) 

where 
n
l

=λ , and H is the q-ary entropy function for q=2 (see previous chapter). 

 
Proof  Define  to be the probability that a code, chosen at random from the 
ensemble, contains a codeword of weight l. Note that 

)(lP
1)0( =P  since the all-zero word is 

always a codeword, as discussed above. Now consider only the case . Since the 
probability of a given entry of the parity-check matrix to be 0 or 1 is ½, the probability 
that a given parity-check equation (row) is satisfied is also ½, which we can see by 
looking only at the entry corresponding to the last position in which the weight l 
codeword is non-zero. Since a sequence is a codeword if and only if all parity-check 
equations are satisfied, and there are 

0>l

)1( Rn −  such equations, it means that the 
probability  is equal to . )(lP )1(2 Rn −−

 

Since there are  words of weight l, the expected number of codewords among these, 

i.e. the average value of  we are looking for is given by . 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
n

)(lW )1(2 Rn

l
n −−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Using Stirling’s approximation formula for , which we encountered before when 
deriving the asymptotic Gilbert bound, it follows that 

!n

)(

)1(2
1 λ

λλπλ
nHe

nn
n

l
n

−
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
   (3.1.2) 

 
Combining the above two results we immediately obtain the statement of the theorem. 
 
Now we will analyze the minimum distance for the ensemble of codes considered, noting 
that its distribution function satisfies the following theorem. 
 
Theorem 3.1.2 Over the ensemble of parity-check codes of length l and rate R, the 
minimum distance distribution function is bounded by the following inequality, where 

2
1

<δ  is such that δn is an integer:  

2ln)1()(

2
1

21
1)Pr( RnnHe

n
nD −−−

−
≤≤ δ

δπ
δ

δ
δ . 

 
Proof  We will derive a bound on the probability that a non-zero word of weight nδ  or 
less is a codeword. This probability is clearly less than the sum of the probabilities that 
individual words are codewords. Using the probability derived in Theorem 3.1.1, we 
have: 

∑
=

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≤

δ

δ
n

l

Rn

l
n

nD
1

)1(2)Pr(           (3.1.3) 

We can rewrite the above summation as: 

⎥
⎦

⎤
⎢
⎣

⎡
+

+−+−
−

+
+−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
L

)2)(1(
)1(

1
1

δδ
δδ

δ
δ

δ nnnn
nn

nn
n

n
n

 

 

Since 
11 +−

<
++−

−
δ
δ

δ
δ

nn
n

knn
kn  for all δnk ..1= , we can upper bound the above 

summation by the geometric series , with K+++ 21 xx
1+−

=
δ
δ

nn
nx , and obtain that  

⎟
⎠
⎞

⎜
⎝
⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑
=

−−

δ
δ

δδ

δ

21
1

1
12

1

)1(

n
n

xn
n

l
nn

l

Rn . 

 
The statement of our theorem immediately follows from substituting this result into 
(3.1.3). 
 
 
Gallager further notes that as n gets large, this bound on )Pr( nD δ≤ approaches a step 

function, with the step at 
2
1

0 <δ  for which 2ln)1()( 0 rH −=δ . This relates to the 

asymptotic Gilbert bound on the minimum distance. While Gilbert proves the existence 

 20



of one code with 0δnD > , the above result shows that most of the codes have distance 
close to 0δn . More formally, for any 0>ε , theorem 3.1.2 shows that the probability of a 
parity-check code to have distance )( 0 εδ −< nD  approaches 0 exponentially with n. [3] 
 
 
Note that the above result works for a general parity-check ensemble, with no low-
density condition. A similar result holds for low-density parity-check ensembles. 
Depending on the specific condition, namely the right and left degrees, the threshold δ  is 
slightly less than 0δ . Gallager analyzes these thresholds for regular ensembles only, and 
he shows that as the values of the right and left degrees in the ensemble increases, these 
get closer to the value 0δ  [3]. More recent analysis showed that carefully chosen 
irregular ensembles tend to decode with high probability at rates closer to the capacity of 
the channel than is the case for the regular ensembles [21]. The specific irregular 
structures that lead to the best LDPC ensembles depends on both the channel and the 
specific decoding algorithms used. 
 
Let us explain briefly what makes irregular codes perform better than regular codes. In a 
regular code, the number of check nodes corresponding to a given message node is 
constant, i.e. each message node is equally “protected”. To increase protection we would 
need to have a large number of adjacent check nodes. Thus the message nodes would 
have a larger degree, and so would the check nodes. However, this would make the check 
nodes less reliable because they would depend on more message nodes to be received 
correctly.  By contrast, irregular codes do not need to balance reliability and protection 
uniformly. In fact, with irregular codes it is possible to have a “wave effect”, in which the 
nodes with the best protection are corrected first, and then their results are transmitted 
through check nodes to the less protected ones [8].    
 
 
3.2 Decoding efficiency for the LDPC codes 
 
In his thesis, Gallager discussed several decoding algorithms that apply to the underlying 
bipartite graph representing a code. The algorithms work iteratively, and information is 
exchanged between nodes in the graph by passing messages along the edges connecting 
them. The messages represent an estimate of the value of the message bit on the left hand 
side of the edge. In the first round, the message nodes simply send the values initially 
received on the channel. The check nodes respond with a message dependent on the 
messages received. The message nodes then combine these responses and their originally 
received value and compute a new message to send. This process continues, hopefully 
converging on the maximum-likelihood codeword for the received message (for specific 
details of the values sent by the algorithms see the next section). 
 
All decoding algorithms we present generate messages based on extrinsic information, 
meaning the messages send to a node should not depend on the messages received from 
that node. This property, which is important in the proof of the performance bounds for 
the decoding algorithms, requires the graphs to have no cycles of degree less than the 

 21



number of rounds needed for the results to converge. The proofs show that there exist 
some parameter depending on the degree sequence of the graphs, such that if the initial 
fraction of errors is below this parameter, then the fraction of incorrect messages passed 
at each round decreases exponentially with the number of rounds, under the 
independence assumption [20]. Richardson and Urbanke then analyze the fraction of 
errors at each step for a general ensemble of codes, looking at the ensembles of all codes 
with a given degree distribution and of a certain block length. These ensembles would 
contain codes with small cycles. The authors show, however, that the fraction of incorrect 
messages passed at some step for a given code is close to the average fraction of incorrect 
messages. The difference converges to zero exponentially fast in the block length. This 
result is the concentration property. The authors then show that the average fraction of 
incorrect messages for an ensemble converges to value for the cycle-free codes, but the 
convergence is much slower in terms of the block length. But for the cycle-free codes, the 
fraction of incorrect messages decreases to zero, as mentioned above. This shows that for 
large enough block lengths, there is a high probability that the decoding algorithm 
successfully converges for any code, as long as the fraction of errors is below the 
threshold limit. 
 
Richardson and Urbanke also present different methods for determining the threshold 
value for ensembles of codes, and use them to analyze the thresholds for some ensembles 
on the binary symmetric channel. They also explore methods for finding good degree 
distributions that lead to threshold values close to the channel capacity, an exciting 
research problem of high practical value. The methods depend on the specific channel 
and decoding algorithms considered. For the binary symmetric channel they conjecture 
that, as the maximum degree in the distribution increases, the thresholds will converge to 
the ultimate limit, the channel capacity [21]. For the binary erasure channel Luby, 
Mitzenmacher, Shokrollahi, and Spielman have produced codes with rate arbitrarily close 
to the channel capacity, which is p−1 , as showed by Elias [7]. More specifically, they 
construct, for all 0>ε  codes of rate )1(1 ε+−= pR  that, using the erasure decoding 
algorithm presented in the next section, can recover with high probability a message with 
up to  erasures in a period of time proportional to pn )/1ln( εn  [7]. 
 
In order to make our discussion about decoding more concrete we present and discuss in 
the next section some specific decoding algorithms for the binary symmetric channel and 
the binary erasure channel. 
 
 
 
3.3 Decoding algorithms for the binary symmetric and binary erasure channels 
 
The following algorithms were the original algorithms proposed and analyzed by 
Gallager. 
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Gallager's algorithm A 
 
For each message nodes, the neighboring check nodes send the XOR of the messages 
received from all their adjacent message nodes other5 than the receiver of the message. 
The message node continues to send the originally received bit (if any) unless all 
messages received from the adjacent check nodes (other than the receiver of the message) 
disagree with the original value. In the later case he “switches,” and sends the value 
received rather than the original value. 
 
Gallager’s algorithm B 
 
Gallager observed that the above algorithm leads to better results when the message 
nodes switch their value sooner. In this revised algorithm, for each round there is an 
optimal threshold value, which gives the number of disagreeing message from other 
check nodes needed for the message node to “switch” the originally received value. The 
check nodes behave in the same way as in algorithm A. 
 
By extending Gallager’s algorithm to allow nodes to be indecisive, Mitzenmacher 
produced an improved performance algorithm [26], which suggests using larger alphabets 
to provide a more robust decoding at the expense of increase decoder complexity. The 
limit, obviously, is a completely continuous value alphabet to be sent between the nodes. 
This leads to the following decoding algorithm. 
 
Belief propagation 
 
In the previous algorithms, the value sent by the message nodes represented the “best 
guess” of the nodes’s correct value. Using a continuous alphabet, belief propagation is 
instead able to communicate an approximation of the probability. This is the probability, 
conditioned on the information received from all other adjacent message nodes, that the 
check node will be satisfied if message node is 0 for example (for non-binary alphabets, 
the message node would send multiple values, for all but one of the possible values it 
could take). Technically, the message sent is the a posteriori probability of the value of 
the associated variable based on the values of all nodes observed up to and including the 
last round. Note that both the message and the check nodes compute these probability 
distributions6. 
 
The above algorithms apply directly for the binary symmetric channel, and they can be 
adapted with minor modifications to work for the binary erasure channel as well. For 
example, the belief propagation algorithm would have to send two different values, since 
the message alphabet is ternary, not binary, in this model. 
 
Finally, we present a simple decoding algorithm for the binary erasure channel, which we 
used in our experimental testing for the codes generated in chapter 4. 

                                                           
5 Recall the independence condition, which requires that the message sent to a node should be independent 
of the message received from that node. 
6 For the specific details of this computation an excellent reference is [20]. 
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Erasure Decoding 
Do the following: 

Search for a check node for which all but one message value is known. 
Set the missing value to be the XOR of the other (known) values 

Repeat until either all nodes are recovered or the search returns no node. 
 
Unlike the previous algorithms, which may run for an undetermined number of rounds 
until convergence, this algorithm is assured to be linear in the number of nodes and 
edges. However, despite its low complexity this algorithm was proved to decode with 
high probability codes of sufficiently large block lengths and rates converging to the 
channel capacity [7]. Experimental data suggest this simple algorithm can recover a 
significant fraction of errors, and thus can be used in combination with another algorithm, 
such as belief propagation to create a more robust decoding scheme, of intermediate7 
complexity. 
 
 
3.4 Encoding algorithms for LDPC codes 
 
In the previous sections we presented theoretical evidence that LDPC codes could 
achieve error-correction close to capacity. LDPC codes exhibit asymptotically better 
performance than other classes of codes, such as turbo codes8, for example. Moreover, 
the variety of decoding algorithms devised for LDPC codes, allows for a wide variety of 
tradeoffs between performance and decoding complexity. However, a major criticism has 
been the apparent high encoding complexity. While turbo codes, for example, can be 
encoded in linear time, the most straightforward construction proposed for encoding an 
LDPC code takes quadratic time in the block length. We will present this construction, 
and give alternative ideas that reduce the encoding complexity down to linear time. 
 
The basic quadratic algorithm is based on the manipulation of the  parity-check 
matrix of the code. We assume that the parity-check equations are all linear independent, 
so that the rate of the code (the fraction of non-redundant bits) is exactly 

nm ×

nmn − . 
 
I. Preprocessing step: Using Gaussian elimination, transform the matrix H into lower-
triangular form, and use the new matrix 'H  as the parity-check matrix for the encoding. 
Note that we can now divide the codeword into a systematic part (the first non-redundant 

bits), and a parity part, that can be computed using the parity-check matrix from 
the previous bits. 

mn −

 
II. Encoding step: i) Fill in the systematic part with the mn −  desired information 
symbols. ii) Determine the m parity-check bits, noting that, because 'H  is in lower-

                                                           
7 The complexity of the combined scheme would in general be smaller than that of the belief propagation 
algorithm used by itself, since the lower number of initial errors should lead to faster convergence rate 
8 This is another class of codes that have generated a lot of interest in the recent years and is regarded as 
one of the most efficient coding schemes [20]. 
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triangular form, each of these bits depends only on the bits at lower index, and each bit 
can be computed by looking at a single row in the matrix 'H . 
 
After the operations required to bring the matrix into lower-triangular form, the 
time needed to do the actual encoding is proportional to the number of non-zero entries in 

'

)( 3nO

H , since for each parity bit, which is computed by looking at a given row, we need to 
add all the previous bits corresponding to non-zero entries in the row. Since after doing 
Gaussian elimination, in general the matrix will no longer be sparse, there are  
additions to be performed. 

)( 2nO

 
If we can guarantee a sparsity condition on 'H  similar to that on H the above algorithm 
would be linear. However, simply forcing the parity-check matrix to have lower-
triangular form would, in general, result in some loss of performance. Richardson and 
Urbanke developed in [22] greedy algorithms to transform a sparse matrix into an 
equivalent almost lower-triangular sparse matrix. They showed that for certain degree 
sequences these algorithms produce very good results giving rise with high probability to 
codes that allow both transmission close to the capacity of the channel and linear 
encoding complexity. 
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4. Search for good LDPC codes at short block length 
 
The very efficient decoding and encoding algorithms for LDPC codes, discussed above 
make them especially attractive for a number of practical applications, in particular for 
online applications that are especially sensitive to the encoding and decoding time 
complexity. These online applications, such as telnet, require the frequent and reliable 
exchange of messages of small length. These applications would greatly benefit from the 
LSPC coding scheme. This motivates our desire to find good short LDPC codes, which 
could then be used for the above applications. 
 
The challenge for generating good codes of short block length is that, as we discussed in 
section 3.2 the convergence to the performance approaching the channel capacity is quite 
slow for two reasons. First, the average performance of the general ensemble is generally 
lower than the performance of the cycle-free ensemble, and it converges toward the later 
performance slowly. Secondly, the performance of the cycle-free ensemble is guaranteed 
to approach the channel capacity only for large block length, and in practical terms these 
“large enough” values are larger than the ones we would like to consider here. 
 
The encouraging factor is the variation in performance of short codes, which was also 
mentioned in the introduction. This variation implies that the best of a sample of 
randomly selected codes can be much better than the average. The idea is to find an 
efficient method of comparing codes that detects the better ones with high probability. 
Mao and Banihashemi propose such a method in [12], [13], and show that it performs 
well for the binary symmetric channel. The idea of the method is based on the intuition 
that small cycles interfere with the decoding process, because the independence 
assumption is violated and the errors propagate faster than they can be corrected. They 
give a method that efficiently compares the codes based on their girth distribution, which 
is a function of the cycles in the bipartite graph representing the code, and selects the best 
according to this function. They show that this method works well in practice for the 
binary symmetric channel. 
 
In the case of the erasure decoding which we use in our work, the propagation of error is 
avoided by the strong independence condition imposed by the algorithm. However, small 
cycles increase the probability that there exist a small stopping set, which is a set of 
errors that the algorithm cannot recover [1]. Thus, if we can select the codes without 
small cycles, we increase the probability that the erasure algorithm does not get stuck. 
Thus, there is a good intuitive reason why the same heuristic method proposed by Mao 
and Banihashemi should also work for the binary erasure channel. 
 
 
4.1 Girth distribution 
 
Here we give the definition of girth distribution on which Mao and Banihashemi method 
is based. For a given graph, the girth is defined as the smallest cycle in the graph. Mao 
and Banihashemi extend the definition of girth for a node u in the graph to be the smallest 
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cycle which includes u. Because our graph is bipartite, all cycles must have even length. 
This leads to an efficient method of computing the girth of a node. A cycle of length 2l 
passing through u indicates the presence of at least two paths of equal length, l, from u to 
v, the l’th node in the cycle, starting from u.  This node v must be connected to two nodes 
at distance l –1 from u.  Thus, to detect the girth of the node u, we proceed as follows: we 
start at u, and successively construct layers of nodes at distance 1, 2, etc. from u, by 
adding the neighbours of the nodes from the previous layer. We can easily check for the 
first layer at which a node is the neighbour of al least two nodes from the previous layer, 
which indicates a cycle passing through this node and the original node u. At this point 
we halt and report that the girth is ×2 (layer number). In O(n2) time we can thus compute 
the girth for all nodes in the graph and determine the number of nodes with girth values 2, 
4, 6, …lmax, This is defined to be the girth distribution of the graph. Note that lmax, the 
maximum girth of a node is necessarily smaller than the number of nodes in the graph (in 
fact it is smaller than twice the number of both message and check nodes of the bipartite 
graph representing a code). 
 
We can use different measures based on the degree distribution. Mao and Banihashemi 
use the average girth. Based on the idea that smaller cycles are worst than larger cycles, 
we want to avoid a higher number of nodes of a given girth, which is worst than a smaller 
number of nodes of the same girth. Accordingly, we used as our principal comparison 

measure ∑
=

×
max

2

1)(
l

i i
ig , where represents the number of nodes of girth i. Thus smaller 

girths contribute more to the sum, and a smaller value of the sum indicates bigger cycles. 

)(ig

 
 
 
4.2 Experimental Design and Implementation  
 
To test the performance of this method on the binary symmetric channel we implemented 
several functionalities: 
 
1. A random code generator, which takes in a list of pairs of the form (degree, number of 
nodes of that degree) for both the message and check nodes. We decided to specify the 
number of nodes rather than the number of edges (with a certain degree) to avoid round-
up errors, and potential mismatches in the number of edge slots on the right and left. As 
explained in section 2, each node is associated with a number of edge slots corresponding 
to its degree. A random code is generated by randomly pairing the edge slots of the 
message nodes with the edge slots of the check nodes. Note that we must have the same 
number of edges on both sides. 
 
2. Given a code we can find its girth distribution, as described in section 3. We also 
compute different evaluating functions based on the girth distribution. We have 
considered the following evaluating functions: 

a. ∑ =
×max

2
)(1l

i
ig

i
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b. ∑ =
×max

2
)(1l

i
ig

i
, which could potentially reduce the influence of small girths. 

c. ∑ =
×

6

2
)(1

i
ig

i
, focusing on the influence of the small girth values only. 

 
3. To search for the codes with best girth properties we implemented two heuristic search 
algorithms: 

a. Repeated Random, which selects a code with the best score for a given 
evaluating function, out of a random sample of 1000 randomly generated 
codes with same number of nodes and a certain degree distribution. 

b. Metropolis, which, given a code, switches two random edges, and if the 
resulting code turns out to have a better score, Metropolis selects it. 
Otherwise, Metropolis selects it only with a low probability. This procedure is 
repeated 1000 times, and the encountered code with the best evaluating 
function is returned. 

 
4. To test the codes, we implemented the iterative decoding algorithm discussed in 
section 2. A random codeword compatible with the given code is first generated. Then a 
fixed number of message nodes are erased. The iterative algorithm is then run on the 
resulting word, and the number of unrecovered message nodes is reported. 
 
We tested two kinds of ensembles: 
 

a. A regular (3,6)-degree ensemble of codes with 600 message nodes, and 300 check 
nodes. Note that for the regular codes, 3 is the optimal value for the message 
nodes degree. 

 
b. An irregular ensemble with 7 different degrees on the left, and 3 different degrees 

on the right. The degrees and numbers of nodes of each degree were chosen to 
approximate a probability distribution derived in [7], for irregular codes over the 
erasure channel. Due to problems of matching degrees on the left and right hand 
side and to our desire to have about 600 message nodes and 300 check nodes (as 
in a.), the rounding up involved in the calculation of the number of nodes of each 
degree leads to values not very close to the theoretical ones, especially in the case 
of the check nodes. We present below the theoretical vs. actual fraction of edges 
of given left and right degrees.  
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Degree Theoretical   Actual  
10 0.713788 0.859397013
11 0.122494 0.027895182

200 0.163718 0.112707805

Figure 2. Fraction of edges of the given degrees 
on the right (a) and left (b). 

n functions induced the same ordering on the random codes tested. 
ctions a. and c. returned the same scores indicating that the score was 
mall cycles (of size 6 and lower). 

ted random and the metropolis algorithms, the codes selected had the 
so neither method outperformed the other. 
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erased). The scores are listed in increasing order. As noted in section 2, lower scores 
indicated girth distributions with fewer smaller cycles, and we expect this property to 
lead to better performance. The above results confirm this claim. All codes encountered 
with the best girth score had performance above the average. 
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The score values are more widely distributed in the irregular case. However, the
performance of this particular irregular ensemble we tested (with 600 message n
347 check nodes) is significantly lower than that of the regular ensemble, probab
our choice of a degree distribution, which is better suited for longer length co
despite the fact that it contains a larger number of check nodes. The few nodes w
high degrees probably introduce a large number of small cycles/stopping sets, w
hard to avoid. Indeed, while the score range for the regular codes is 150 to 15
codes do not go below the score of 160.25. 
 
Also, Figure 4 does not indicate the correlation between lower girth distributio
and high performance that we would have expected. While codes with hig
average performance tend to have lower scores, the lowest scores are not favore
all four codes with the lowest three scores have below-average performance. 
 
Note that there is a concentration of codes with scores in the middle of the 
scores in the ensemble, consistent with the concentration observed in [12] and
the average girth evaluating function. 
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Figure 5. Number of nodes at different girth distribution scores for the regular 
ensemble (right) and the irregular ensemble (left). Note the higher score variance for 
the irregular ensemble. 

 
 
 
 
4.4 Conclusions 
 
The results obtained were encouraging in the case of the higher-performance regular 
codes, but were inconclusive for the lower performance, irregular codes that we tested. 
One possible explanation is that the method is appropriate for selecting the best codes 
only in an ensemble with already good average performance. The specific degree 
sequence selected plays an important role, and sequences that have good asymptotic 
performance are not necessarily those that give best results for selecting short block-
length codes. 
 
Another reason for the lower performance of the irregular code is the presence of a very 
high degree node, which greatly increases the probability of small cycle in such a small 
code. Also the rounding errors introduced by the need to have integer solutions, whereas 
the linear program used gives rational solutions, may lead to a degree sequence that is 
further from optimal than expected. 
 
Overall, our results indicate that the degree sequence used plays a far more important role 
in the performance of the code we select, than the condition that the code performs well 
within the ensemble. The variation of average performances between ensembles is far 
greater than the variation of performance within the ensemble, even for such short block 
lengths.  Thus one important area for future exploration is to find good degree sequences 
for short length codes, and good irregular ensembles on which to test this hypothesis.  
 
Another idea is to develop efficient heuristics or greedy methods to combine in the 
process of generating a random code so that nodes with low girths are avoided. 
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