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Abstract

Sensor networks are distributed data collection systems, frequently used for mon-

itoring environments in which “nearby” data has a high degree of correlation. This

induces opportunities for data aggregation, that are crucial given the severe energy

constraints of the sensors. Thus it is very desirable to take advantage of data cor-

relations in order to avoid transmitting redundancy. In our model, we formalize a

notion of correlation, that can vary according to a parameter k. Then we relate

the expected collision time of ”nearby” walks on the grid to the optimum cost of

scale-free aggregation.

We also propose a very simple randomized algorithm for routing information on a

grid of sensors that satisfies the appropriate collision time condition. Thus, we prove

that this simple scheme is a constant factor approximation (in expectation) to the

optimum aggregation tree simultaneously for all correlation parameters k. The key

contribution in our randomized analysis is to bound the average expected collision

time of non-homogeneous random walks on the grid, i.e. the next hop probability

depends on the current position.

Key words: Sensor networks, aggregation, random walk, collision time, routing,

simultaneous optimization.

Email addresses: mihaela@cs.stanford.edu, ashishg@stanford.edu,

ramesh@cs.usc.edu, rajeev@cs.stanford.edu (Rajeev Motwani).
1 Research supported in part by NSF grant CCR-0126347.
2 Research supported in part by NSF grant CCR-0126347 and NSF Career grant

No. 0339262.
3 Research supported in part by NSF grant CCR-0121778.
4 Research supported in part by NSF Grants IIS-0118173, EIA-0137761, and ITR-

0331640, and an SNRC grant.

Preprint submitted to Elsevier Science 20 January 2006



1 Introduction

Consider a network where each node gathers information from its vicinity and

sends this information to a centralized processing agent. If the information is

geographically correlated, then a large saving in data transmission costs may

be obtained by aggregating information from nearby nodes before sending it

to the central agent. This is particularly relevant to sensor networks where

battery limitations dictate that data transmission be kept to a minimum, and

where sensed data is often geographically correlated. In-network aggregation

for sensor networks has been extensively studied over the last few years [9,7,14].

In this paper we show that a very simple opportunistic aggregation scheme

can result in near-optimum performance under widely varying (and unknown)

scales of correlation.

More formally, we consider the idealized setting where sensors are arranged

on an N ×N grid, and the centralized processing agent is located at position

(0, 0) on the grid. We assume that each sensor can communicate only to its

four neighbors on the grid. This idealized setting has been widely used to

study broad information processing issues in sensor networks (see [12], for

example). We call an aggregation scheme opportunistic if data from a sensor

to the central agent is always sent over a shortest path, i.e., no extra routing

penalty is incurred to achieve aggregation.

To model geographic correlations, we assume that each sensor can gather

information in a k×k square (or, a circle of radius k/2) centered at the sensor.

We will refer to k as the correlation parameter. Let A(x) denote the area sensed

by sensor i. If we aggregate information from a set of sensors S then the size of

the resulting compressed information is I(S) = |⋃x∈S A(x)|, i.e., the size of the

total area covered by the sensors in S. Often, the parameter k can depend on

the intensity of the information being sensed. For example, a volcanic eruption

might be recorded by many more sensors and would correspond to a much

higher k than a campfire. Accordingly, we will assume that the parameter k

is not known in advance. In fact, we would like our opportunistic aggregation

algorithms to work well simultaneously for all k.

There are scenarios where the above model applies directly. For example, the

sensors could be cameras which take pictures within a certain radius, or they

could be sensing RFID tags on retail items (or on birds which have been tagged

for environmental monitoring) within a certain radius. Also, since we want

algorithms that work well without any knowledge of k, our model applies to

scenarios where the likelihood of sensing decreases with distance. For example,

consider the case where a sensor can sense an event at distance r only if it has
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“intensity” f(r) or larger, where f is a non-decreasing function. Then, events

of intensity y correspond to information with correlation parameter roughly

f−1(y); if these events are spread uniformly across the sensor field then an

algorithm which works well for all k will also work well for this case.

Thus, we believe that our model (optimizing simultaneously for all k) captures

the joint entropy of correlated sets of sensors in a natural way for a large variety

of applications, a problem raised by Pattem et al. [12].

For node (i, j), we will refer to nodes (i−1, j) and (i, j−1) as its downstream

neighbors, and nodes (i + 1, j) and (i, j + 1) as its upstream neighbors. Since

we are on a grid, we will also informally say that the neighbors are to the left

or down/bottom (for downstream) and right or up/top (for upstream) of the

original node (i, j). We would like to construct a tree over which information

flows to the central agent, and gets aggregated along the way. Since we are

restricted to routing over shortest paths, each node has just one choice: which

downstream node to choose as its parent in the tree. In our algorithm, a node

(i, j) waits till both its upstream neighbors have sent their information out 5 .

Then it aggregates the information it sensed locally with any information it

received from its upstream neighbors and sends it on to one of its downstream

neighbors. The cost of the tree is the total amount of (compressed) information

sent out over links in the tree.

Note that we do not need all sensors at a certain distance to transmit syn-

chronously; we just need to make sure that a node sends its information only

after both its upstream nodes have transmitted theirs. This can be enforced

asynchronously by each sensor. In any case, Madden et al. [10] have developed

protocols to facilitate synchronous sending of information by sensors (depend-

ing on the distance from the sink) which we can leverage if needed.

Our Results: We propose a very simple randomized algorithm for choos-

ing the next neighbor – node (i, j) chooses its left neighbor with probability

i/(i+ j) and its bottom neighbor with probability j/(i+ j). Observe that this

scheme results in all shortest paths between (i, j) and (0, 0) being chosen with

equal probability 6 . We prove that this simple scheme is a constant factor

approximation (in expectation) to the optimum aggregation tree simultane-

ously for all correlation parameters k. While we construct a single tree, the

5 Of course maybe one, or both, of the upstream nodes may decide not to choose

(i, j) as the parent node; however we assume that node (i, j) gets notified anyway

when its upstream nodes send information out.
6 Note that if you multiply the resulting probabilities, as the path approaches the

origin the denominators are exactly the same for all the paths; the numerators are

also the same (but permuted depending on the specific path).
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optimum trees for different correlation parameters may be different.

The key idea is to relate the expected collision time of random walks on the

grid 7 to scale free aggregation. Consider two neighboring nodes X and Y (i.e.

nodes which can communicate with one another in our model), and randomly

trace a shortest path from each of them to the sink. Define the collision time

to be the number of hops (starting at say X) before the traces first meet. We

first show (Sect. 3) that if the average expected collision is O
(√

N
)

, then we

have a constant factor approximation algorithm to the optimal aggregation

for all correlation parameters k. We then show that the average expected

collision time for our randomized algorithm is indeed O
(√

N
)

(Sect. 4). This

analysis of the average expected collision time is our main technical theorem

and may be of independent interest. To achieve this result, we first analyze

the expected number of differing steps (where the two paths move in different

directions) and then prove that the probability of a step being a differing step

is a super-martingale.

We also present (Sect. 5) a slightly more involved hierarchical routing algo-

rithm that is deterministic, and has an average collision time of only O(log N);

hence the deterministic algorithm is also a constant factor approximation for

all correlation parameters k. While this scheme has a slightly better perfor-

mance, we believe that the simplicity of the randomized algorithm makes it

more useful from a practical point of view.

Our results hold only for the total cost, and critically rely on the fact that in-

formation is distributed evenly through the sensor field. It is easy to construct

pathological cases where our algorithm will not result in good aggregation if

information is selectively placed in adversarialy chosen locations.

This result shows that, at least for the class of aggregation functions and

the grid topology considered in this paper, schemes that attempt to construct

specialized routing structures in order to improve the likelihood of data aggre-

gation [6] are unnecessary. This is convenient, since such specialized routing

structures are hard to build without some a priori knowledge about corre-

lations in the data. With this result, simple geographic routing schemes like

GPSR [8], or tree-based data gathering protocols are sufficient [7,10].

Related Work: Given the severe energy constraints and high transmission

cost in the sensor network setting, data aggregation has been recognized as

a crucial operation, which optimizes performance and longevity [4]. In the

sensor network literature, aggregation can refer to either a database aggregate

7 In the random walks considered here the probability of each move will depend on

the current grid position.
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operator (min,max,sum etc.) [1,10,11], or to general aggregation functions such

as the one we consider in this paper.

Goel and Estrin [3] studied routing that leads to a simultaneously good so-

lution (a log N approximation) for a large class of aggregation functions. In

their model, the amount of aggregation only depends on the number of nodes

involved, independent of location, and the network need not be a grid. In our

problem, the amount of aggregation depends on the location of the sensors

being aggregated: the closer two sensors are, the more correlated their data

is. But it is also easier to aggregate data from nearby nodes. Hence, it seems

intuitive that better simultaneous optimization may be possible for our case,

an intuition that we have verified in this paper.

We build on the work of Pattem et al. [12] who study a closely related question,

comparing three different classes of compression schemes for sensor networks:

routing-driven compression, in which the routes from the nodes to the des-

tination point just follow a shortest path, and in which compression is done

opportunisticaly whenever possible, compression-driven routing which builds

up a specialized routing structure, and distributed source coding which lever-

ages a priori information about correlations. After a theoretical analysis of

these schemes, they introduce a generalized cluster-based compression scheme

in which correlated readings are aggregated at a cluster head, which is studied

via simulations. They find that across a wide variety of correlations (roughly

parameterized by the joint entropy of two sensors spaced d apart), the cluster-

based compression scheme works reasonably well with a relatively fixed cluster

size. Our model captures a wider range of joint entropy functions (since we

also approximate any linear composition of k-correlated information for differ-

ent values of k), one of the open problems they pose. Also, we present a formal

proof of simultaneous optimization. It is easy to see that their cluster-based

compression scheme does not perform well in our model, in that no single

cluster size can be within constant factor of the optimal aggregation tree for

all k.

Another study of routing schemes for correlated sensors has been performed

by Cristescu et al. [2]. They showed that for a two-stage model where the

amount of information depends only on whether a node is an internal node

or a leaf, finding the optimum aggregation tree is NP-hard; they also present

a constant factor approximation for this problem. Their result holds for an

arbitrary sensor network (as opposed to just a grid).
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Fig. 1. The k × k sensors that detect a given value (the black square) for k = 4

2 Problem Definition

Recall our setting in which sensors are arranged in a N × N grid with a

centralized processing agent at (0, 0). Each sensor can only communicate with

its immediate neighbors on the grid (at most four). We can assume that each

sensor knows it’s (x,y)-coordinates. This can be done for example via the

fine-grain localization method described by Savvides et al. [13].

The sensor network can sense multiple kinds of data. For a specific type of

data, we will refer to the information contained in a 1 × 1 grid square as a

value. We then define this type of data k-correlated data if the following holds:

(i) Each value is sensed by all the sensors in a k × k grid centered at that

location, as in Fig. 1. We will assume for simplicity that k is even, so that

the notion of centering is well defined.

(ii) Let Ak(x) denote the set of grid squares sensed by sensor x. If information

from a set S of sensors is aggregated, the resulting information is of size

|⋃x∈S Ak(x)|
We will look at k-correlated data for which k < N/2, since otherwise we obtain

a pathological case in which all information can be captured by a single sensor

in the network. As stated in the introduction, we need not assume that the

nodes equidistant from the central agents send data synchronously. However,

we assume the transmission is partially synchronized, so that a node sends

information only after receiving all data from its upstream neighbors and after

finishing aggregating that information with its own data. We assume that a

sensor cannot withhold information, and needs to send all information it can

sense.

Given this setting, we want to find a tree on which to send information from

all sensors to (0, 0) so as to minimize the cost, simultaneously, for all values

of k. In our cost model we focus on the transmission cost, assuming perfect

aggregation, i.e. assuming a value v is transmitted across an edge e at most

once. Each time such value is transmitted from some node to its downstream

neighbor in the routing tree, the total cost increases by 1. More formally the

cost we consider is given by the following equation:
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COST = Σe |{v|value v is transmitted across edge e}|
Theorem 2.1 Lower bound on optimum cost (OPT) is θ (N3 + (Nk)2).

Proof: Look at one individual value, at point (x, y) with x, y ≥ 0 and con-

struct the minimum cost routing for it.

The closest node to the origin that senses this value, at coordinates (x −
k/2, y − k/2), has to send the value all the way to the origin, so a cost of

D = x+ y−k (distance from the point to the origin must be paid). All values

incur this cost.

The value must be transmitted by all the nodes that can sense it, each node

thus introducing a cost of 1. Thus, for all values for which the sensing k × k

square is included in the N × N grid (it is easy to observe that there are

(N − k)2 such values), there is a cost of at least k2 before the distinct values

can be aggregated at a single node. We ignore this contribution to the cost for

the other values.

Since we assume different values cannot be aggregated between them, we get

a lower bound for the overall cost of at least:

∑

values

D + (N − k)2k2 = 4





∑

0<x<N,0<y<N

(x + y − k)



+ (k(N − k))2

= N2(N − 1 − k) + (k(N − k))2

If we only consider parameters k < N/2 then N − 1− k ≤ N/2 and the above

becomes θ (N3 + (Nk)2) as desired.

There may not exist a single tree which is optimum for each value v. This

is because from the point of view of a value v1 a certain sensor may need to

communicate with one downstream neighbor for optimal aggregation, while

from the point of view of another value v2 that same sensor may need to

communicate with the other downstream neighbor. This would lead to an

impossible solution for the routing tree in which only one downstream neighbor

can be selected. However, our analysis, while not solving for the exact value,

does give a lower bound on OPT.
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3 Relating Opportunistic Aggregation to Collision Time

Recall our definition of opportunistic algorithm, i.e. one in which the infor-

mation from node X is sent to the processing agent on a shortest path. Note

that the paths from any two neighbors X and Y , having the same destination,

will eventually meet at some point Z. We call the distance from X to Z the

collision time of X and Y .

Theorem 3.1 An opportunistic algorithm with average expected collision time

O
(√

N
)

gives a constant factor approximation to the optimum aggregation

cost for all k.

Proof:

In a similar fashion as in our proof for the lower bound for the OPT , look

from the point of view of a data value which is shared by k×k sensors. Inside

the square we pay the same cost as in our lower bound for the OPT (i.e. at

most k2). Also the lower-left node transmits the value to (0, 0) via a shortest

path just as in OPT . So far, the cost is the same.

To analyze the extra cost incurred by the opportunistic algorithm from our

hypothesis, consider the left and lower sides of the k × k sensing square of a

given value. The paths from all sensors inside the square will go through one

of the points on these sides. Consider these paths from the sides of the square

to (0, 0). There is some extra cost equal to the collision time between two

adjacent nodes from the left and lower sides of the square, since two instances

of the shared value are transmitted, instead of only one instance as would

happen in the optimal case. It is easy to see that for each pair of adjacent

nodes, there are k values that incur the extra cost due to the collision time,

or put another way, k shared values for which these nodes are on the sides.

Summing up the OPT cost and the extra cost we obtain the following equation

for the total cost of our algorithm:

∑

values

D+k2N2+k
∑

sensors
(collision time of the paths from two adjacent sensors)

= θ
(

N3 + (kN)2
)

+ O
(

kN2.5
)

The first two terms are the same as in the lower bound for OPT .

If k <
√

N then the N3 term dominates the (Nk)2 term, as well as the k×N2.5

term, and we get an O(1)-approximation.

If k >
√

N then the (Nk)2 term dominates the other two terms, and we get

again an O(1)-approximation.
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Note that we compare to a lower bound for OPT , not OPT itself, which may

be hard to compute, so the constant factor may be even less than what we

can compute here.

4 The Probabilistic Distribution Shortest Path Algorithm

We will present a simple randomized opportunistic algorithm for constructing

a tree. The path from each node will be a random walk towards the processing

agent, but the walks are not independent. The main result is to prove that

the average expected collision time of two adjacent paths in the resulting

routing tree is O
(√

N
)

. The analysis of our random process may well be of

independent interest. Applying theorem 3.1, we conclude that this algorithm

produces a constant factor approximation of the optimal aggregation trees for

any value of k.

The Probabilistic Distribution Algorithm: For every node, if the node

is located at position (x, y), choose to include in the MST the left edge with

probability x
x+y

and the down edge with probability y

x+y
.

The Random Walk view: We can view the above process as a tree con-

structed from random walks originating from each sensor. At each time step

the current node chooses one of the (at most) two downstream nodes as its

parent. Because a node waits for its upstream nodes to transmit we can view

the process as a flow in which the data gets closer by one to the origin at each

time step. In our model, when two walks meet (passing some step through the

same node) they ”collapse” into a single walk and lose their independence.

The analysis of the expected collision time for this random process is pre-

sented below. We believe our analysis is interesting since the random walk is

non-homogeneous, thus standard random walk results do not apply.

4.1 Proving the Average Collision Time of the Random Walks

Theorem 4.1 (Random Walk Theorem) The average expected collision

time of two adjacent walks as generated by the randomized probabilistic distri-

bution algorithm is O
(√

N
)

.

Let us first introduce some notation, definitions, and lemmas which would

help us prove the above result.

Two neighboring nodes can be either horizontal or vertical neighbors, and

one, say the second, must be the upstream neighbor of the other. Thus there

is a x
x+y

probability to meet initially. If they do not meet initially, then the
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upstream node chooses as its parent the other downstream node, which on the

grid is at distance 2 from the first node, and at the same distance from the

origin.

Let’s assume that the two walks do not meet initially. Thus, we will analyze

the collision time of the random walks originating at (x− 1, y) and (x, y − 1).

This new ”diagonal” collision time provides a lower bound in the collision time

of the initial ”horizontal/vertical” neighbors. In fact we will prove the result

stated in our Random Walk Theorem for this redefined notion of collision

time, which then implies the original theorem.

Note that, because the nodes are at the same distance from the origin we can

imagine them moving towards the processing agent ”in sync” (this synchronic-

ity assumption is not needed but it helps in thinking about the process). Look

at the horizontal difference between the two paths, as a function of time, and

let’s denote this by ∆t(x, y). Initially, ∆0(x, y) = 1. Because in general we

focus our attention to a specific (x, y) we will drop these parameters from the

notation. We want to analyze E[tc] where tc is such that ∆t = 0 for the first

time. Observe that tc is precisely the collision time as defined earlier, since the

two walks start from the same distance from the origin, and at every time step

we assume the walks move one unit closer, so there is a one-to-one correspon-

dence between time and distance from the initial point to the collision point.

Once the horizontal distances become equal, the vertical distances must also

be equal and the two paths would meet.

Let M = x + y − 1, the initial distance from the origin.

At each time step, ∆t can stay the same or become different (increase or

decrease by 1). We call a step at which ∆t differs from ∆t−1 a differing step.

By analyzing these differing steps we will transform the problem from a two

dimensional process to a one dimensional process.

We will first analyze the number of differing steps before collision (Lemmas 4.2

and 4.3), and then bound the probability that a step is a differing step (Lem-

mas 4.4 and 4.5). These results together will lead to the proof of the main

result.

Definition 4.1 Let’s denote by D(x, y) the number of differing steps before

∆t becomes 0 for the first time.

Lemma 4.2 E[D(x, y)] is O
(√

min(x, y)
)

.

Proof: At time t, when the first path is above at, say, point (x1, y1) and the

second path is below at point (x2, y2) we know that x1 +y1 = x2 +y2 = M − t.

Initially x1 < x2, so this above/below relation will continue to hold until

∆ = x2 − x1 first becomes 0. Also, initially, x2 = x and y1 = y.
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Based on our probabilistic model, and the above/below relation we derive the

following for the next time step:

Pr(∆t+1 − ∆t = 1) =
x1y2

(x1 + y1)2
and Pr(∆t+1 − ∆t = −1) =

x2y1

(x1 + y1)2

Using y1 = M − t − x1 and y2 = M − t − x2 we obtain the following:

Pr(∆t+1 − ∆t = 1) + Pr(∆t+1 − ∆t = −1) =
(M − t)(x1 + x2) − 2x1x2

(M − t)2

and Pr(∆t+1 − ∆t = 1) − Pr(∆t+1 − ∆t = −1) = − ∆t

M−t
.

Now define pf(t) = Pr(∆t+1 − ∆t = 1|∆t+1 − ∆t 6= 0) and pr(t) = Pr(∆t+1 −
∆t = −1|∆t+1 − ∆t 6= 0) to be the conditional (normalized) probabilities of

a forward (positive) change in ∆, and of a reverse (negative) change in ∆,

respectively.

Also define λ as below: 8

λ = pf (t) − pr(t) = Pr(∆t+1−∆t=1)−Pr(∆t+1−∆t=−1)
Pr(∆t+1−∆t=1)+Pr(∆t+1−∆t=1)

= − ∆t(M−t)
(M−t)(x1+x2)−2x1x2

Since pf(t) + pr(t) = 1, we can rewrite pf(t) and pr(t) as:

pf (t) =
1

2
+

λ

2
and pr(t) =

1

2
− λ

2
where λ still contains a dependence on t. The convergence to ∆ = 0 can only

be slower if λ is smaller in absolute value. Note that by removing the 2x1x2

term from the denominator of λ we can only decrease the overall absolute value

of λ. Also, we get the same effect if we replace x1 +x2 by 2 max(x1, x2) = 2x2.

Also, the M−t factor will get simplified so we can replace λ by − ∆
2x2

to obtain

new forward and reverse probabilities, independent of t and only dependent

on ∆:

nf (∆) =
1

2
− ∆

4x2
and nr(∆) =

1

2
+

∆

4x2

Now consider an integer random walk in [0, max(x1, x2) = x2], with an ab-

sorbing barrier at 0, and a reflecting one at max(x1, x2) = x2.

We analyze the behavior of this one dimensional random walk in lemma 4.3. By

construction, the expected time for this new random walk to reach 0 starting

8 Note that λ is negative.
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from 1 is an upper bound to the expected time for ∆ to reach 0 starting from

1.

We can then conclude that ∆ reaches 0 in O
(√

x2

)

by directly applying the

result in lemma 4.3. By symmetry we can also obtain time O
(√

y1

)

. Since

x2 = x and y1 = y initially, the theorem is proven.

Lemma 4.3 Consider an integer random walk starting at point 1 on the in-

terval [0, x]. Assume that, if we are at position j the random walk moves right

with probability nf(j), and left with probability nr(j) in the interval [1, x − 1]

where nf (j) and nr(j) are as defined in lemma 4.2. Assume that the point 0 is

absorbing, and that the point x is reflecting (i.e. the walk moves to x− 1 with

probability 1 from x). If the walk starts at point 1, then the expected number

of time steps necessary for this walk to first reach 0 is O (
√

x).

Proof:

Note that at each step we move either in one direction or the other, since, by

definition, nr + nf = 1.

Define B(j) to be the expected number of steps before the point j − 1 is first

visited, assuming that the random walk starts at point j. We are then looking

for the value of B(1). We will use the properties of the walk, in particular the

values of nf (j) and nr(j) to derive a recursive formula for B(j) and then get

a bound for B(1).

If we pass exactly i + 1 times through point j before reaching point j − 1,

the expected number of steps is iB(j + 1) + 1. The probability of this event

is nr(j)nf (j)
i. Since i can range from 0 to ∞ we get the following relation for

B(j), where j ∈ [1, x − 1]:

B(j) =
∞
∑

i=0

nr(j)nf(j)
i(iB(j+1)+1) = nr(j)

∞
∑

i=0

nf (j)
i+nr(j)B(j+1)

∞
∑

i=0

nf (j)
ii

=
nr(j)

1 − nf (j)
+

nr(j)nf(j)

(1 − nf (j))2
B(j +1) = 1+

nf(j)

nr(j)
B(j +1) =

2x − j

2x + j
B(j +1)+1

Further note that B(x) = 1 because x is a reflecting barrier, so in the next

step we move back with probability 1.

We want to solve for B(1), the value of interest.

If we expand B(1) in terms of B(x) we obtain:

B(1) =
2x
∑

i=1

2x − 1

2x + 1
× . . . × 2x − i

2x + i
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To simplify notation, denote 2x by X and 2x−1
2x+1

× . . . × 2x−i
2x+i

by Ti.

Note that the Ti’s are decreasing as i increases, since all component factors

are less than 1. Now, note that for i ∈ {1, . . . , 2
√

X} we have Ti ≤ 1.

For i ∈ {2
√

X + 1, . . . , 3
√

X} we have Ti ≤
(

X−
√

X

X+
√

X

)

√
X

since the last
√

X

factors in each of these Ti are all less than X−
√

X

X+
√

X
.

In general, for any m, if i ∈ {m
√

X + 1, . . . , (m + 1)
√

X} we have Ti ≤
(

X−
√

X

X+
√

X

)

√
X(m−1)

.

Thus B(1) can be upper bounded by a geometric series with sum X+
√

X

2
√

X
.

Note that the
(

X−
√

X

X+
√

X

)

√
X

is approximately e2, and thus constant, for large

enough X, where X = 2x. Thus, the first term (the fraction) of this bound is

a constant, and we conclude that B(1) is O (
√

x).

Definition 4.2 Define pt(x, y) = Pr[∆t is differing | two walks have not collided yet].

As before, we will omit the arguments x, y since they are fixed.

Lemma 4.4 For all t, pt+1 ≥ pt

Proof:

Suppose the first walk is at coordinates (i, j) and the second one at coordinates

(i + ∆t, j − ∆t).

Case 1 (∆t ≥ 2): Then ∆t+1 ≥ 1, since the difference between ∆t and ∆t+1

can be at most 1. Thus the random walks would not meet at time t+1, so we

eliminate the conditioning for pt+1, and we have the following:

Pr[∆t is differing] = f(i, j, ∆t) =
i(j − ∆t) + j(i + ∆t)

(i + j)2

Pr[∆t+1 is differing] = g(i, j, ∆t) =
i(j − ∆t)f(i − 1, j, ∆t + 1)

(i + j)2
+

+
i(i + ∆t)f(i − 1, j, ∆t)

(i + j)2
+

j(i + ∆t)f(i, j − 1, ∆t − 1)

(i + j)2
+

j(j − ∆t)f(i, j − 1, ∆t)

(i + j)2

It is easy to verify, using Mathematica for example, that f(i, j, ∆t)−g(i, j, ∆t) =

0, and hence, pt = pt+1.

Case 2 (∆t = 1): In this case the conditioning in the definition of pt+1 implies

that one of the cases in the above formula cannot take place. We still obtain

that pt+1 ≥ pt, but the details are technical and are deferred to the appendix.
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Lemma 4.5 The expected time before a differing step between two adjacent

walks originating at coordinates (x, y) and (x + 1, y − 1) is O
(

x+y

min(x,y)

)

.

Proof:

From lemma 4.4 we see that at each time step the probability of a differing step

is bounded below by p0 which is the initial probability of having a differing

step, given by:

x(y − 1) + (x + 1)y

(x + y)2
= θ

(

min(x, y)
2 max(x, y)

(x + y)2

)

= θ

(

min(x, y)

x + y

)

This implies our lemma.

Proof: [Random Walk Theorem]

Consider two walks at (x, y) and (x + 1, y − 1).

From Lemma 4.5 we bound the probability of a differing step to happen.

Combining this with the result from Lemma 4.2 which bounds the expected

number of differing steps before the two walks meet we obtain:

E[collision time for adjacent walks at (x, y)] = θ

(

√

min(x, y)
x + y

min(x, y)

)

= θ





x + y
√

min(x, y)





Taking the sum over all x, y pairs we obtain:
∑

x,y

(

x+y√
min(x,y)

)

= θ(N2.5).

Thus, since there are O(N2) pairs of adjacent nodes, the average is exactly

O(
√

N), which concludes the proof of the expected average collision time

theorem.

5 The Hierarchical Decomposition Approach

We now present a deterministic algorithm for constructing a tree that pro-

duces a constant factor approximation for any value of k. This algorithm has

better properties (its average collision time is O(log N) instead of O
(√

N
)

for example), but it is more involved. Also the approximation provided is still

O(1).

The solution is based on the idea of dividing the grid into sub-grids, and

collecting all the values in a given sub-grid at the sensor closest to the origin

14



A B

CD

Fig. 2. Combining 4 smaller sub-grids to create the sub-grid at the next level

before forwarding it onto the next sub-grid.

5.1 The Hierarchical Decomposition Algorithm

We present the construction and the proof of correctness in parallel. We need

two stages: a top-down stage in which we establish the sub-grids recursively,

and a bottom-up stage in which we put the sub-grids together. We will assume

for simplicity that N is a power of 2.

The Top-Down Stage: Divide the first quadrant in four sub-grids of size

N/2×N/2, each of which is further divided in four size-N/4×N/4 sub-grids,

and so on. For each sub-grid we will make sure that the MST converges to

the sensor closest to the origin, i.e. if there is choice in what direction to move

towards the origin, choose the choice that would not leave the sub-grid. If

there is still choice choose arbitrarily.

The Bottom-Up Stage: We will prove by construction the following lemma.

Lemma 5.1 If a 2k × 2k sub-grid has the property that its average collision

time is less than ck for all adjacent node pairs in the sub-grid, then we can

construct a 2k+1 × 2k+1 sub-grid with average collision time of c(k + 1) for all

adjacent node pairs, where c is some constant greater than 2.

Proof:

We assume the parent node is determined for all nodes inside the 2k × 2k

sub-grid, and thus we have constructed an MST, rooted at the sensor node

closest to the origin, such that the property is true. If we combine four copies

of this construction, as in Fig. 2 we need to establish the parent node of the

three root sensors B, D, and C representing the upper-left, lower-right, and

upper right sub-grids respectively. For the first two the choice is forced (the

sensor at B needs to go left, and the one at D needs to go down). For the

third (the sensor at C) let us route to the left.

Now calculate the new average for the 2k+1 × 2k+1 sub-grid, assuming the

hypothesis holds for the 2k × 2k ones.

We have 2(2k)2 pairs included in each of the 4 smaller sub-grids, and thus have

15



average less then ck, from the hypothesis. We also have 2k+2 new pairs (the

ones spanning the white lines) that have collision time bounded by 2k+2. Thus

we obtain a new average collision time of: 8ck(2k)2+(2k+2)2

2(2k+1)2
≤ ck + 2 ≤ c(k + 1)

as long as c > 2.

The base case is trivial.

6 Conclusions and Future Work

In this paper, we have argued that there exists a routing tree which is a con-

stant factor approximation (in expectation) to the optimum aggregation tree

simultaneously for all correlation parameters k. We present two constructions

and prove that they obtain a constant approximation factor. Our result has

important consequences – it obviates the need for specialized routing struc-

tures at least for the class of aggregation functions considered in this paper.

This is convenient, since such specialized routing structures are hard to build

without some a priori knowledge about correlations in the data.

There are several possible future research directions that this work leads to.

It would be interesting to study the behavior of our randomized algorithm for

non-grid topologies (for example on a random graph), or for the grid-topology

model with generalized connectivity assumption, in which nodes have a larger

number of neighbors. Another research direction would be to extend the aggre-

gation model, either by defining a more general framework, or by analyzing

the range of aggregation functions that can be obtained by combining the

already defined functions.
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A Technical Details for Case 2 of Lemma 4.4

Since we want to maintain ∆t+1 ≥ 1 (no collision at time t + 1), we eliminate

the case in which the first walk moves from (i, j − 1) to (i− 1, j − 1) and the

second walk moves from (i − 1, j) to the same point as the first walk.
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Thus our formula for pt+1 becomes:

Pr[∆t+1 is differing | the two walks do not collide] =
i(j − ∆t)f(i − 1, j, ∆t + 1)

(i + j)2
+

+
i(i + ∆t)f(i − 1, j, ∆t)

(i + j)2

j(j − ∆t)f(i, j − 1, ∆t)

(i + j)2
= g(i, j, ∆t)−

j(i + ∆t)f(i, j − 1, ∆t − 1)

(i + j)2

while the formula for pt remains

Pr[∆t is differing] = f(i, j, ∆t) =
i(j − ∆t) + j(i + ∆t)

(i + j)2

Taking the difference between the two, and simplifying, using Mathematica

for example, we obtain:

(pt+1 − pt)(i + j)2 = i3 − i2(j − 2) − i(j − 1)2 + (j − 1)2j

If j > i the right hand side reduces to 2i2 + (j − i)[(j − 1)2] − i2 which is

positive; if i > j the right hand side reduces to [i2 − j2](i − j) + 2i which is

again positive; if i = j the right hand side is just 2i2, again positive.

Combining this with the fact that (i + j)2 ≥ 0 for all i, j we deduce that

pt+1 − pt is always positive, which is exactly what we wanted to prove.
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