of the Sixth
1990.

in Proceedings Conference

Cambridge, MA, August,

on Uncertainty

212

in Atrtificial Intelligence,

IDEAL: A software package for analysis of influence diagrams

Sampath Srinivas
srinivas@rpal.com

Jack Breese
breese@rpal.com

Rockwell Science Center, Palo Alto Laboratory
444 High Street
Palo Alto, CA 94301

Abstract

DEAL (Influence Diagram Evaluation and Analysis
= Lisp) is a software environment for creation and
=vzlnation of belief networks and influence diagrams.
IDEAL 1s primarily a research tool and provides an
—=plementation of many of the latest developments
= belief network and influence diagram evaluation in
= unified framework. This paper describes IDEAL
zn<2 some lessons learned during its development.

1 Introduction

Ower the last few years influence diagrams [6] and be-
= networks [10] have emerged as attractive represen-
:z:ion schema for domains where uncertainty plays
zn important role. There has been a wealth of work
== both basic issues such as the semantics of these
s=presentations as well as on efficient algorithms to
crocess them [10,8,14).

This work has now matured to the point where
1hese techniques are finding their way into production
systems. 1DEAL is a software package that was de-
w=loped as a platform for research in belief networks
znd influence diagrams. IDEAL also can be used to
-reate intermediate sized run-time systems and as a
Zbrary of functions that provides the belief network
znd nfluence diagram methodology for embedded use
ov other applications.

IDEAL incorporates, in a unified framework,
many of the latest developments in algorithms for
=valuation of belief networks and influence diagrams.
In addition, it provides a complete environment for
=reating, editing and saving belief networks and influ-
snce diagrams. In the rest of the paper any reference
o ‘diagrams’ can be taken to refer to influence dia-
grams and belief networks unless stated otherwise.

2 Structure

IDEAL is written in Commen Lisp. Lisp was chosen
as the implementation language since it 1s most suited
to exploratory programiming and quick development.
In addition, the software i1s portable across a wide
variety of platforms.

IDEAL is a library of Lisp functions that pro-
vides the following features:

e Data structures for representing influence dia-
grams and belief networks.

e Facilities for creating and editing influence dia-
grams and belief networks.

e Tacilities for copying, saving (to file) and loading
influence diagrams and belief networks.

e Utilities that are of use in coding influence dia-
gram manipulation algorithms etc.

e Utilities that provide many usefu] services like
consistency checking and creation of random be-
lief networks.

e Routines that perform some basic transforma-
tions of influence diagrams.

» Algorithms for performing inference in influence
diagrams and inference and belief propagation in
belief networks.

o Influence diagram evaluation algorithms.

These functions can be used interactively by a
user typing to a Lisp interpreter or embedded in
code by other applications. To preserve portability,
IDEAL has only a simple character terminal based
user interface. However, it provides hooks for easy
development of a graphic interface layered over it on
any specific platform. A graphic interface has been
developed for the Symbolics environment.


Ram
Text Box
in Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, 
Cambridge, MA, August, 1990.


3 Facilities in IDEAL

3.1 Data structures

IDEAL provides abstract data structures for rep-
resenting influence diagrams and belief networks.
These data structures and a tool kit of associated
functions provide all the basic low level functionali-
ties required for the creation of belief networks and
influence diagrams. This includes creation of directed
acyclic graph topologies, creation of probability ma-
trices and other matrices and vectors that are indexed
and sized by the states of the nodes in the graph, ac-
cessing these matrices and vectors, manipulation of
the graph topology, control constructs that allow easy
traversal of these node matrices, etc. These are low
level features that can be used by programmers to
develop functionalities that are not available directly
in IDEAL. A user who does not need any additional
functionalities can interact with IDEAL with higher
level functions described below.

3.2 Creating and Editing diagrams

The functions used to create and edit diagrams are
at a higher level than the functions that manipulate
the low level data structures. These functions expect
fully specified diagrams as input and return consis-
tent diagrams after they are done. Some of these
functions require interactive input from the user.

Functions to do the following are available; Cre-
ation of complete diagrams, adding arcs, deleting
arcs, adding nodes, deleting nodes, adding states to
a node, deleting states from a node and editing node
distributions. These functions make svitable assump-
tions that guarantee consistency of the diagram after
they are done. For example, adding an arc between
two nodes extends the distribution of the child node.
This extension of the distribution is done such that
the child node is independent of the new parent, i.e,
the child node has the same distribution given its
predecessors regardless of the state of the new node.

Most of these functions can be used embedded in
code to create diagrams on the fly. These functions
provide the right hooks into IDEAL for a user who is
interested primarily in the existing functionality and
does not need to go into the low level implementation
details.

3.3 Copying and Saving Diagrams

The copy function in IDEAL makes a complete copy
of a fully specified diagram. This is frequently useful
when one wants to make some transformation that
might destructively modify the diagram. The copy-

213

ing mechanism provides a means of keeping an un-
modified original in the Lisp environment.

IDEAL algo has functions that allow the user to
save a diagram to file and to reload diagrams from
these saved files. IDEAL saves the diagram in text
files and so they can easily be exchanged between
users at remote sites or on different platforms by elec-
tronic mail or other means. The saving function can
be made to recognize any extensions that the user
may make to the abstract diagram data structures.
Thus, any custom information that a user may want
to associate with the diagram can also be saved and
retrieved.

3.4 Utility functions

IDEAL provides a wide variety of utility functions
that are of use in conjunction with belief networks
and influence diagrams. Consistency checking func-
tions for the following are available: To check whether
a diagram is consistent (i.e., it is acyclic, the proba-
bility distributions sum to 1, etc), to check whether
a diagram is acyclic (a lower level function), to check
whether a diagram has a strictly positive distribution
and to check whether a diagram is a belief network.

User interface utilities are available for display-
ing a description of the diagram in text format, for
easily accessing nodes in the diagram and for describ-
ing the contents of particular nodes of a diagram.

A set of utility functions is available for creat-
ing ‘random’ belief networks. This set of functions is
useful for creating exarnples for testing of belief net-
work algorithms and for quickly creating test belief
networks that satisfy certain user defined criteria (for
example, see {1}).

In addition to these there are miscellaneous util
ity functions. Some examples: a function for sori-
ing the nodes in the diagram by graph order and
a function that modifies the distributions of a non-
strictly positive diagram slightly (as specified by an
argument) to make the distribution strictly positive.

3.5 Diagram transformations

This s a set of functions, each of which take a cor-
sistent diagram as input and return a consistent c-
agram. These transformations are used in reduction
style algorithms [14,13]. They can also be used -
make changes in diagrams or to preprocess them be-
fore passing them to an inference scheme.

Some of the transformation functions are: Re-
moval of a particular barren node from a diagram.
Removal of 2ll barren nodes from a diagram, absorb-
ing a chance node in a diagram, reversing an arc



w=cz—xz z deterministic node etc. The transforma-
Loz “zmciions (as implemented) change the input di-
we=— dsstructively to yield the result. Details of
we== transformations can be found in [9,14].

2 5 Graphic Interface and documen-
tation

<= —=ztioned before, IDEAL is designed to be a
sorzz.= tool and so it does not include any imple-
me==z:ion specific graphics features. On the other
1 zocks are available for in IDEAL for easily lay-
: = "aph_lcs interface over it.

=<h an interface has been developed for IDEAL
5}:; olics machines. In addition to standard
==z manipulation commands this interface pro-
—ost of the functionalities described above ei-
:zrough mouse driven graph manipulation (for
=versing an arc) or through convenient menu
t—+== commands. The interface allows convenient
1o the Lisp environment in a separate window
:zn be a very effective programming too! when
oping applications based on IDEAL.IDEAL and
“== Ssmbolics interface to IDEAL are documented in
S in [17].

[
tr

| r

¢ Algorithms in IDEAL

=L provides many different evaluation and in-
et algorithms The implementation emphasis is

:,.r extensive input chec.ks and also explicitly de-
s===z error conditions such as impossible evidence (see

e 5.2).

The algorithms implemented in IDEAL fall into
= "“"ces — reduction a.lgonthms {14, 13} message

E== ___alatlon algonthms [20]. The algorithms m
:lass are closely related to each other but differ
= =omplexity or are applicable to only specific kinds
= s=lef networks. Reduction algorithms are used for
====nce diagram evaluation (i.e., solving an influ-
==c= diagram for the optimal decision strategy) and
‘== mference. When used for inference they answer
= queries, i.e, they give the updated belief of
-#ic target node given a set of evidence nodes.
== zlgorithms in the latter three classes (as imple-

works. .They give updated beliefs for all the nodes
= '_"= 'ﬂtwork given evidence. The data structures

zx2 1he data structures where the updated beliefs are
fomnd after the algorithin has finished running are the

214

same for all algorithms of the latter three classes. So,
if need be, the actual algorithm used can be a deci-
sion that is transparent to the end user or any calling
function which needs an inference mechanism whose
details are irrelevant.

4.1 Reduction algorithms

Infiuence diagram evaluation algorithms as described
by Shachter [14] and Rege and Agogino [13] are avail-
able. Inference algorithms applicable to both infiu-
ence diagrams and belief networks are also available
as described in the same sources.

These algorithms operate by making a series of
transformations (see above) to the imput diagram.
The input diagram is destructively modified.

4.2 Message passing algorithms

Message passing algorithms model each node as a pro-
cessor that communicate by means of messages. A
distributed algorithm from Pearl that applies to poly-
trees [10] is implemented in IDEAL. This implemen-
tation also utilizes work by Peot and Shachter [11]. A
conditioning algorithm that works for all belief net-
works 15 also available. The conditioning algorithm
calculates cutset weights as described by Suermondt
and Cooper [18]. A variation of the conditioning al-
gorithm from Peot and Shachter [11] is also available.
The conditioning algorithms find cutsets as described
by Suermondt and Cooper [19].

4.3 Clustering algorithms

Clustering algorithims aggregate the nodes in a belief
network into a join {ree of ‘meta’ nodes and then run
an update scheme on this tree. The updated beliefs
for each of the belief network nodes is then calculated
from the ‘meta’ nodes.

IDEAL implements two variations of the ba-
sic clustering algorithm described by Lauritzen and
Spiegelhalter {8]. The first considers the join tree as a
‘meta’ belief network and runs a variation of the poly-
tree algorithm [10] on it. The second variation uses
an update scheme that operates on clique potentials
as described by Jensen et al [6].

Two methods are available for making the fill-in
for use in construction of the join tree — Maximum
Cardinality Search [20] and a heuristic elimination
ordering heuristic from Jensen et. al. {7,12].

4.4 Simulation Algorithms

IDEAL implements a simulation algorithm from
Pearl {10). This implementation can only operate on



belief networks with strictly positive distributions.

4.5 Estimator functions

IDEAL provides run time estimator functions for
sorne of the algorithms implemented in it. Given an
algorithm and a particular belief network with a par-
ticular state of evidence, the estimator function gives
a quick estimate of the complexity of the update pro-
cess.

In general, belief net inference algorithms con-
sist of two kinds of operations, The first kind are
graph operations that are polynornial in the number
of nodes in the graph (eg, triangulating a graph for
clustering, conversion of a multiply connected net-
work into a singly conmected network by instanti-
ating a cutset)!. The other class of operations are
the actual numerical calculations that are carried out
over the probability and potential matrices associ-
ated with the graphs. We will refer to this as the
update process. The overall exponential complexity
algorithm derives from the fact that these matrix op-
erations carried out during the update process take
exponential time. The estimator functions in IDEAL
give a quick estimate of the complexity of these ma-
trix operations.

The complexity count that is returned is a count
of the number of steps the algorithm will spend in
spanning the state spaces of the nodes or cliques in-
volved. For example, if & binary node A has a lone
binary node B as a predecessor then the complexity
count of setting the probability distribution of A is
four since one has to cover a state space of 2x 2 states.
The complexity of normalizing the belief vector of A
is again 4 since one has to cover the state space of
the node A twice, once for surnming the beliefs and
once for normalizing them.

An estimator function for a particular algorithm
takes an inference problem as input, i.e, a belief net-
work and associated evidence. The estimator per-
forms the polynomial time graph manipulations that
are necessary for initialization before the actual up-
date process can begin. It then applies embedded
knowledge of the update process to give an exact
count of the number of steps that the update pro-
cess will take. A step is defined as explained in the
previous paragraph. This estimate is made in linear
time. So overall, the estimator function runs in time
polynomial in the size of the input.

1Here we refer to the actual graph algorithm implemented
as against the algorithm which would give optimal resuvlts. For
exarmple, the algorithm implemented in IDEAL for finding a
loop cutset for conditioning runs in polynomial time while the
problem of finding the minimal loop cutset is NP-hard (see (3]
for both results).

215

We have calibrated the estimates yielded b3
these functions against actual time measurements o
how long it takes to solve the corresponding problems
The correlations have been strong (see Sec 5.1).

5 Discussion

IDEAL has been a success from the experimental
point of view. It has been used both for in-house ap-
plications and research both within and outside Rock-
well. Some examples of the uses of IDEAL include =
decision aiding model for pilots that helps to sort tas
vast flow of information that comes to the cockpi:
from the sensors on the plane, a life cycle costs anak-
ysis system for Rocket engines, embedded use in 2
natural language system for story understanding [Z
and an implementation of interval influence diagrams

4).

3 One of the lessons we learned in the process of
implementing IDEAL was that many of the algorithm
papers do not describe the algorithms in standard al-
gorithmic style. In addition they leave many detaills
incompletely specified. From an engineering point of
view, it would be very useful if we had both a more
complete description of algorithms and in a more con-
ventional style. IDEAL’s emphasis on code readabil-
ity and explicitness were of great help in detecting
and correcting any problems that came up.

5.1 Estimator functions

As explained in the previous section, the estimator
functions carry out the polynomial time graph ma-
nipulations that precede the update process and then
give an estimate of the complexity of the update pro-
cess. The resuits of the graph manipulation are re-
quired to make the estimate. The actual estimate is
the result of applying a formula to the results of the
graph manipulation. These formulae were derived by
analysis of the update process of each algorithm. The
estimator functions in IDEAL apply only to exact al-
gorithms (as opposed to approximation algorithms).

As an example of an estimator function, consider
the estimator for the Jensen method [6] of clustering.
Given a belief network the complexity of initializing
the join tree by the Jensen method if given by:

2 B+ NO)SW)
ver
where U represents a Bayesian belief universe, J
is the join tree made up of Bayesian belief universes,
N(U) is the number of neighbors of U in the join
tree and S(U) is the size of the joint state space of
the belief network nodes that are members of U.



T-= iarmula is easily derived as follows. For
s ==0=7 gniverse the potential distribution has to

e == == >+ multiplying the distributions of the com-

weme=- zeli=f network nodes. This has complexity

T 2=z z belief universe absorbs from its neigh-
L= == complexdty of the operation is S(U). When
. w-iz:=s 2 neighboring sepset, again the complex-
operation is S(U). During the collect-
wi==-= operation, each universe absorbs from its
==izhbor sepsets and then updates its ‘parent’
-r sepsets. Thus, for each universe the com-

-7 the operation is 25(U).
:':_:: the distribute-evidence operation, each
w=—c= Srst absorbs from its ‘parent’ sepset neigh-
wor 2= then updates all the ‘child’ sepset neighbors.
The somplexity of the operation is N(U)S(U) for
— z=iverse U, Summing the terms for initializa-
© the join tree, the collect-evidence operation
= == distribute-evidence operation gives the com-
:f:_.—_-' Zormula above.
.= zpproximate formula that gives the complex-
* 12= update process in the Jensen algorithm is:

3O @+ NO)SWY+ ST + SG))
TeJ i€EB

e e 2o

e
b

'!‘!

o

Ii

i

w=xezre U; is the smallest universe (in terms of
ce size) that contains node ¢ of the network.
update process conmsts of one collect

— e =

a marginalization operation for setting the
i vectors of the belief network nodes, These fac-
2= tzke inlo account the fact tha.t some optimiza-
=== zzn be made based on the position of evidence in
= _'-"- tree. It a.l.so does not mclude the operatlons

Ve have obtained excellent correlations between
=== complexity estimates given by the estimator func-
=== for various algorithms and the actual run time.

demonstrates the correlation for the update

~=z2s= of the Jensen algorithm. The data in the graph

== collected by running tests on randomly created
Z=7 networks.

As expected, particular algorithms suit particu-
== 1vpes of problems well. When choosing what algo-
=i=m to use, ip addition to the type or size of prob-
== _one needs to consider whether the belief network

ived needs to be solved just once or salved mul-
uiple times with different evidence sets. Conditioning
.L, rithms are competitive (though not necessarily
fzst2r) when the problems needs to be solved only

ih

216

Update phase of Jensen algorithm

300

T
@
o
=
Q
O 2007
Q
LA
0
E
j=
=
A
= 100 .
2
(2]
<
0 ; .
0e+0 Se+4 1a+5 2e+5
Complexity Estimate (steps)
Figure 1: Performance of estimator functions: An
example

once. This could be the case, for example, In a sys-
tem that constructs belief networks dynamically and
uses each network only once. When the same network
is used repeatedly with different evidence pieces, the
clustering algorithms are superior. The construction
of the join tree can be considered as a compilation
step of the belief network that needs to be carried
out, only once. '

Though IDEAL is an experimental tool it gives
reasonable response times for medium size problems.
As an example, a 50 node network developed as part
of a decision aid system for aircraft pilots takes about
17 seconds to solve on a Symbolics 3645. IDEAL’s
speed is limited both by the choice of implementation
language and its implementation style, where explicit
code rather than speed has been the top priority.

5.2 Handling determinacy and incon-
sistency

In all the algorithms, gains can be made by explicitly
detecting determinacy in the network. This can be
done as a pre-processing step [15](in which case the
netwark topology itself 1s modified) or, more gener-
ally, in the propagation phase of the algorithm.
When the joint probability distribution of a be-
Lief net (i.e, the joint distribution of all the variables
in the belief net) is not strictly positive it means that
somne particular configuration of the belief net is im-
possible. This in turn implies that some subset(s)
of nodes of the belief net have non-strictly positive
Jjoint distributions, i.e., the unconditional probability
of some joint state of the subset is zero. The actual



makeup of these subsets depends on the conditional
independencies in the network.

Let the network 7 {or some subset of nodes of
the network) have an impossible state 7 = i. Then,
obviously, any conditional probability distribution
P(X/I = i) where X is another subset of nodes of
the network cannot be assigned meaningfully. If an
implementation of any probabilistic inference algo-
rithm does not account for such circumstances, this
leads to a divide by zero error if the implementa-
tion tries to calculate the distribution P(X/I = 7).
This occurs either when calculating P(X/] = 1) as
P(X,I=1)/P(I = 1) or when normalizing the repre-
sentation of P(X/I = i), say R(X/I = ©) for all states
r of X where each R{(X = z/I = i) has been found
to be zero. Note that the representation is inconsis-
tent and cannot represent a conditional probability
distribution that sums to 1.

Ay impossible state can oceur due to two things:

1. Inconsistent Evidence: The evidence that the
user has declared may be inconsistent with the
belief net. Let us say that the probabilities en-
coded in the belief net are such that for a subset
of nodes A of the belief net P(A = a) is zero
where a 1s some )oint state of the nodes A. 1If
the evidence we declare happens to be exactly
a or some superset of it (i.e a plus evidence for
some nodes outside A) then obviously we will hit
a divide by zero error when performing inference
to find some distribution P(B/A = a) where B is
some other set of nodes in the belief net. This is
because the distribution we are seeking is hypo-
thetical, unassignable or meaningless, depending
on how we look at the problem.

2. Natuore of algorithm: An impossible state may
also be caused by the natare of the inference al-
gorithm. Consider the conditioning algorithm,
for example. It performs whatever inference we
are interested in conditioned on every possible
Joint state of a set of cutset nodes which make
the belief net singly connected. The results ob-
tained from each of these conditionings are then
‘weighted’ to get the results. Thus if the cutset
is A and the evidence is £ = ¢ and the target
node(s) is B then we find P(B/A =a, E = ¢) for
all possible states a of A and then weight these
results. If P(A = a, E = ¢) is zero for some state
a of A it is easy to see that we have an impossible
state which would lead to a divide by zero error
when calculating P(B/A = a,E = ¢). Thus,
in gemeral, an algorithm can hit an impossible
situation (which cannot be attributed to incon-
sistent evidence) if the algorithm calculates any

conditional distribution in which the conditioz-
ing node set consists of some belief net noces
which are not evidence nodes.

5.2.1 Reduction algorithms

In reduction algorithms a divide by zero error
occur when we try and find new conditional distri-
butions. This happens only during arc reversal anz
node absorption. In inference algorithms node z3-
sorption 1s just a special case of arc reversal and sc
we need to look only at arc reversal.

When performing arc reversal to find a new di=-
tribution P(A/B = b) where A is a single nods
and B is a set of nodes the basic method is iz
marginalize P(A, B = b) and then normalize it u=
ing the marginal. We hit a divide by zero error &
the marginal P(B = b) happens to be zero. In suck
a case IDEAL makes P(A/B = b) a uniform dis
tribution. This is justified because any subsequen:
manipulation of the distribution P(A/B = b) by a r=
duction algorithm always involves multiplying 1t intc
P(B = b) first. We know that P(B = b) is zerc anc
so P(A/B = b) can be anything. The advantage ¢f
this uniform assignment is that the diagram remains
consistent (i.e., the numbers still constitute a valic
probability distribution) even after the transforma-
tien. The disadvantage is that if the user’s quers
to the system was P(A/B = b) and P(B = b) hap-
pens to be zero for some state of B then the use:
will not realize i6 and may ascribe some meaning iz
the distribution P(A/B = b) even though it has nc
meaning. Note that this effectively amounts to out-
putting garbage when the evidence is impossible {tae
evidence being that particular state b of B).

5.2.2 Message passing algorithms

The polytree algorithm, as implemented in TDEAL
cannot hit the divide by zero error during the prop-
agation phase since it calculates only joint probabil-
ities. However, when normalizing the beliefs of each
belief network node after the propagation is done, it
is possible to find that the marginal is zero. This ¢:-
rectly implies that the evidence declared before ths
propagation is impossible (i.e., P(E = e) = 0) sine=
the marginal is nothing but P(E = e). IDEAL de
tects this situation explicitly and tells the user tha:
the evidence is impossible.

This conditioning algorithrm makes the belief ne:
a poly tree by clamping the states of a cycle cutse:
of nodes §. The evidence is propagated as by the
polytree algorithm for each of the evidence pieces and
then the result is weighted to get the beliefs of each
node given the evidence alone.



IDEAL supports two conditioning implementa-
The first calculates cutset weights explic-
In other words, for every node A we calcu-
2= P(A/S = s,E = e) and then use that to cal-
slate P(AJE = e) as the marginal of the prod-
PA/S = = €¢)P(S = s/E = e), where
5 =s/E = e) is a ‘mixing’ probability. We will
=z the divide by zero error when P(S=s,E=¢)is
z2ro and we try and calculate P(A/S =5, F =¢).
In this implementation, a cutset conditioning
:zse s for which P(S = s,E = ¢) = 0 does not
-ontribute to the overall belief. So to avoid an er-
zor the cutset algorithm checks for the occurrence of
=5 = s,E = €) = 0 during the recursive update
rocess that determines P(S = s/E = e). If the con-
tion occurs then that cutset conditioning case s is
skl _ped Other than being a graceful technique to de-
==:7 an impeossible situation, this step, 1o conjunction
-r,:' Suermondt and Cooper’s [19] technique for cal-
—= zting cutset weights, can lead to substantial com-
= ==tv gains since whole classes of impossible cutset
—=se=s can be detected and skipped with very little
==-r:_ For example, if the cutset consists of three bi-
=== nodes A, B and C (in graph order (4, B, ()),
=== knowing that P(4 = ¢) = 0 immediately elimi-
2z0=c 4 cutset cases, one for each state combination
* = znd C in conjunction with 4 =¢.
I= the second conditioning implementation [11]
=ditional probabilities are calculated during the
s=zozzation phase and so no divide by zero errors are
sos=i-l=. However, it is possible that when marginal-
_'__ belief vectors of the nodes after the propa-

Ssons

'll‘

T

- .aral

—

= ha.t has been propaga.ted is impossible (see
se=wuous subsection). IDEAL detects this situation
:i¥ in both conditioning implementations.

Clustering Algorithms

- —

.41 supports two clustering algorithm implemen-
=== The first implementation creates a join tree
= c—.zze=s and calculates the conditional probabili-
t== = :2e join tree. Consider a cligue A with a
preeg __.‘214“ B. We hit the divide by zero er-
P(B = b) is 0 and we try and calculate

When creating the join tree we asmgn
z'B =) = 0 (we could assign anything, in
izc zll states a of A when P(B = b) = 0. After
= oz tree is created the clustering algorithm uses a
f ¢ _1» polytree algorithm for evidence propa-
o the divide by zero problem cannot come

_;'

econd implementation from (6] handles a
“wws= =% zero condition during the propagation as

218

described in the original paper. After propagation, if
a zero marginal is encountered when normalizing the
beliefs this implies that the evidence was impossible.
IDEAL signals the fact explicitly in both clustering
implementations.

5.2.4 Simulation Algorithms

The simulation algorithm coded in IDEAL cannot
handle non-strictly positive belief networks. If such a
belief network is given as input the algorithm breaks
with an appropriate warning.

6 Further developments

We foresee more work on developing efficient estima-
tor functions. Each estimator function may be ex-
panded into a class of functions where one may trade
off the accuracy of the estimate with the time re-
quired to make the estimate. It may be possible to
use these estimator functions to help choose between
competing algorithms for a given problem or to use
them as a search function to search through a space
of competing alternative solutions.

IDEAL, has incorporated almost all the pub-
lished work to date on exact belief network and influ-
ence diagram algorithms. We will probably include
any promising new methods that come up (for exam-
ple, nested dissection [3]) so that we can choose the
best possible method for the applications we have in
mind.

We will also be including some approximation
algorithms such as Likelihood weighting {16].

7 Acknowledgements

We would like to thank Robert Goldman for being
an invaluable source of suggestions, bug reports and
enhancements. We would also like to thank Bruce
D’ambrosio, Keni Kanazawa, Mark Peot and other
users of IDEAL for their suggestions and help.



References

(1]

2}

3]

[4]

(5]

(6}

(7}

(10)

[11]

Breese, J. S. and Horvitz, E. J. (1990) Refor-
mulation of beliel networks for reasoning un-
der bounded resources. Submitted to the Sixth
Workshop on Uncertainty in Artificial Intelli-
gence, Boston.

Charniak, E. and Goldman, R. (1989) Plan
recognition in Stories and in Life. Proceedings of
the Fifth Workshop on Uncertainty in Artificial
Intelligence, Windsor, Ontario, 54-59.

Cooper, G. F. (1990) Bayesian belief-network
inference using nested dissection. Report
No. KS1-90-05, Knowledge Systems Laboratory,
Medical Computer Science, Stanford University.

Fertig, K. W. and Breese, J. S. (1989) Interval
Influence Diagrams. Proceedings of the Fifth
Workshop on Uncertainty in Artificial Intelli-
gence, Windsor, Ontario, 102-111.

Howard, R. A. and Matheson, J. E. Influence
diagrams. The Principles and Applications of

Decision Analysis 2. Strategic Decisions Group,
Menlo Park, CA.

Jensen, F. V| Lauritzen S. L. and Olesen K. G.
(1989) Bayesian updating in recursive graphical
models by local computations. Report R 86-15,
Institute for Electronic Systems, Department of
Mathematics and Computer Science, University
of Aalborg, Denmark.

Jensen, F. V. and Kjaerulff U. (1989) Triangu-
lation of graphs — Algorithms giving small total
clique size. In preparation.

Lauritzen, S. L .and Spiegelhalter, D. J. (1988)
Local computations with probabilities on graph-
ica] structures and their applications to expert
systems J. R. Statist. Soc. B, 50, No. 2, 157-
224.

Olmsted, S. M. (1983) On representing and solv-
ing decision problems. Ph.D Thesis, EES Dept.,
Stanford University.

Pearl, J. (1988) Probabilistic Reasoning 1 Intel-
ligeni Systems: Networks of Plausible Inference.
Morgan Kaufrnann Publishers, Inc., San Mateo,
Calif.

Peot, M. and Shachter, R. D. (1989) Fusion and
Propagation with Multiple Observations in Be-
lief Networks. 1o appear.

[12]

[13]

(14)

[15)

16}

[17]

(18]

[19]

[20)

Rose, D. J., Tarjan, R. E. and Lueker. = =
(1976) Algorithmic aspects of vertex elirz
on graphs. SIAM J. Computiing 5:266-2%2.

Rege, A. and Agogino, A. M. (1988) Topoioz-
cal framework for representing and solving z=o=-
abilistic 1nference problems in expert sysie==
IEEF iransactlions on Sysiems, Man and Cyiem
netics,18 (3).

Shachter, R. D. (1986} Evaluating influencs 2-
agrams. Operations Research 34 (6), 871-%%2

Shachter, R. D. (1989) Evidence absorption 2=z
propagation through evidence reversals. Fro-
ceedings of the Fifth Workshop on Uncertaizt;
in Artificial Intelligence, Windsor, Ontario. 375~
310.

Shachter, R. D. and Peot, M. (1989) Simulazioz
approaches to general probabilistic inference =
belief networks. Proceedings of the Fifth Work-
shop on Uncertainty in Artificial Intelligenc=
Windsor, Ontario, 311-318.

Srinivas, S. and Breese, J. S. (1989) IDEAL
Influence diagram evaluation and analvsis iz
Lisp. Documentation and user’s guide. Techni-
cal Memorandum No. 23, Rockwell Internaticnz.

Science Center, Palo Alto Laboratory, Palo Alic
CA.

Suermondt, H. J. and Cooper, G. F. (1988)
dating probabilities in multiply connected
lief networks. Proceedings, Influence Diagram
Workshop, University of California, Berkeley.

Up-

Suermondt, H. J. and Cooper, G. F. (193¢
Initialization for the method of conditioning iz
Bayesian belief networks. Report KSL-8%-21
Knowledge Systems Laboratory, Medical Com=
puter Science, Stanford University.

Tarjan, R. E. and Yannakakis, M. (1984) Sim
ple linear time algorithms to test chordality <f
graphs, test acyclicity of hypergraphs and s=
lectively reduce acyclic bypergraphs. SJA3 7
Computing 13:566-579.





