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Abstract 
 

Superconductors hold immense potential for various applications and could profoundly impact humanity. Despite 
extensive research, a room-temperature superconductor of practical value has yet to be achieved. The BCS theory 
cannot account for high-temperature superconductors. This issue may arise from the traditional model inaccurately 
attributing resistance to particle collisions of electron flow in conductors. This research proposes an alternative 
theory. According to the shear resistance, the state of matter can be a solid or a fluid. Likewise, the electrical 
resistance state of the same substance can be an insulator, a conductor, or a superconductor at different pressures 
and temperatures. These states are primarily determined by electron tunnels, which develop through molecular 
interactions. Within electron tunnels, electrons can move across molecules at the same potential level, resulting in 
currents. In conductors, electrons are confined to their molecules below the energy level of electron tunnels; energy 
is needed to elevate them into these tunnels to produce currents, causing electrical resistance. The resistance of a 
conductor can be decreased by compressing molecular spacing, as it minimizes the gap between valence orbitals 
and electron tunnels. With additional pressures, the gap can be further reduced to zero in superconductors, 
resulting in the intersection between valence orbitals and electron tunnels. Therefore, electrons can enter the 
tunnels without lifting energy, leading to zero resistance. This explains the inverse relationship between resistivity 
and pressure and why many high-temperature superconductors are achieved under high pressures. Molecular 
spacing decreases at low temperatures, as electrons move to lower orbitals. It reduces the pressure between 
molecules, mimicking the compressing effect. This elucidates the correlation between resistivity and temperature 
and why conventional superconductors are observed at low temperatures. In insulators, the electron tunnels are 
disconnected due to large molecular spacing. This spacing can be reduced with high pressures, thereby joining 
these tunnels. This is why some ceramics become superconductors under high pressures. This theory unifies 
insulators, conductors, and superconductors as dynamic resistance states of matter at different pressures and 
temperatures. The distinction between these states lies in the extent and connectivity of electron tunnels and the 
gaps between the tunnels and valence orbitals. A crucial insight from this theory for synthesizing room-temperature 
superconductors is the need to compress molecular distances. The significant barrier is the repulsion between 
molecules. Overcoming this repulsion with external pressures, as currently done to achieve most high-temperature 
superconductors, is impractical for most applications. An alternative approach may involve engineering molecular 
structures to leverage molecular attractions between certain molecules to overcome the repulsion. 
 

 
Introduction 

 
Since its discovery in 1911, superconductivity has been a popular research field due to its extraordinary properties and 
promising applications.[1-2] For instance, energy shortages are a key factor limiting economic growth, as seen in the training 
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of AI models. Ultimately, energy constraints the development of civilization across the universe. Fusion reactions offer a 
promising solution for a clean energy supply. One of the primary tasks in designing the tokamak fusion reactor is to use 
magnetic fields to confine the charged particles within the reactor. Generating these magnetic fields with normal conductor 
coils consumes so much energy. Superconductors are crucial for designing a tokamak fusion reactor capable of achieving 
breakeven energy production. 
 
Cooper pairs of electrons, bound together by electron-phonon interactions, were proposed as the mechanism behind 
superconductivity in BCS (Bardeen-Cooper-Schrieffer) theory.[3] However, there are two key challenges to this theory. The 
first challenge concerns the assumption that a free electron attracts nearby nuclei, creating a high-density region of 
positive charge and thereby facilitating the electron-phonon interaction that binds Cooper pairs. In reality, each nucleus is 
surrounded by electron clouds that repel nearby electrons at short distances. As a result, instead of attracting surrounding 
nuclei, a free electron would tend to push them away, creating a low-density region of positive charge. This contradicts the 
basic premise of the electron-phonon interaction, raising questions about the physical foundation of the Cooper pair 
formation. 
 
The second challenge to BCS theory arises from the observation of superconductivity at high temperatures. 
Electron-phonon interactions are generally believed to be significant only at low temperatures, as the vibrations of 
electrons and the crystal lattice weaken these interactions at higher temperatures, leading to the breakdown of 
superconductivity. However, since 1986, numerous superconductors have been discovered that exhibit superconductivity 
at temperatures well above the theoretical maximum predicted by BCS theory.[4-8] Furthermore, most high-temperature 
superconductors require high pressures to function, yet BCS theory fails to explain the positive effect of pressure on 
superconductivity. 
 
BCS theory also fails to explain many observed phenomena in superconductors, which will be discussed later in this 
article.[9] The issue may lie in the incorrect assumptions underlying the Drude model of electrical resistance, which is 
implicitly incorporated into the BCS framework. According to the Drude model, conductors contain a sea of free electrons 
that flow through the material to generate electric current. Electrical resistance arises from collisions between these free 
electrons and the atomic lattice, with each collision scattering the electrons and dissipating energy. In BCS theory, it is 
assumed that the formation of Cooper pairs minimizes these electron-lattice collisions, thereby reducing resistance and 
enabling superconductivity. 
 
However, the assumptions underlying the Drude model are not fully proven. According to the conventional model of 
conductors, free electrons form a "sea of electrons" that acts as a kind of glue between the atomic nuclei, creating metallic 
bonds. The stability of a conductor’s structure relies on the strength of these metallic bonds. But what happens if this sea 
of electrons is removed from the conductor? The atomic nuclei, which form the lattice, would repel each other, causing the 
structure of the conductor to collapse. The concept of a free-moving electron sea implies that the bonding "glue" holding 
the metallic lattice together is not localized. This raises the question: how can the conductor's structure remain stable with 
such an inherently unstable form of bonding? In reality, conductors are highly stable and can withstand significant shear 
and tension forces. This calls into question the validity of both the electron sea model and the traditional understanding of 
metallic bonds. 
 
In addition, the traditional model of electrical resistance faces similar challenges at high pressures. The Drude model posits 
that electrical resistance arises from collisions between flowing electrons and the lattice in conductors.[10] If this model were 

 



accurate, high-density materials should exhibit higher resistance. As pressure increases, the atoms in a conductor are 
packed more tightly, leading to more frequent collisions between electrons and the lattice, and thus, higher resistivity. 
However, experimental observations reveal the opposite: resistivity actually decreases with increasing pressure.[11-13] This 
trend holds all materials, from insulators to conductors to superconductors. Under high pressure, resistance continues to 
drop and can eventually reach zero, as seen in many high-temperature superconductors. Notably, many of 
superconductors are not metals, such as ceramics, which become superconducting only under high pressure. These 
findings challenge the assumptions of the Drude model, suggesting that a more nuanced understanding is needed to 
explain electrical resistance and superconductivity. 
 
The failures of these theories on resistivity and superconductivity at high pressures may not be coincidental but a 
consequence of incorrect assumptions in the collision model for electrical resistance and misconceptions of electron sea. 
These may have misled researchers and hindered theoretical and practical progress in the field, particularly in searching 
for room-temperature superconductors.  
 
Rather than treating resistivity and superconductivity as distinct states of matter, we believe they should share the same 
physical mechanism. An alternative theory is proposed in this study with the introduction of a concept for the electron 
tunnel, which develops between molecules in materials at a close distance. The resistivity of substances is determined by 
the spacing between molecules, a dynamic variable influenced by pressure and temperature. Therefore, electrical 
resistivity correlates with pressure and temperature, which determine the electrical state of matter. 
 
In the following sections, we will introduce key concepts that form the foundation of our theory, using simplified models. By 
examining the crystal structure of simple molecules, we can develop mathematical models that predict the existence of 
electron tunnels and explain the properties and behaviors of both conductors and superconductors. These models suggest 
that superconductivity is not an exceptional state, but rather a common phase of matter, particularly at high pressures. 
Furthermore, the transition between different electrical phases—superconducting, conducting, and insulating—can be 
understood as a result of changes in the spacing between molecules, which are influenced by pressure and temperature. 
These models provide valuable insights into electrical resistivity and offer guidance for overcoming the challenges in the 
quest for room-temperature superconductors. 
 
Note that the models used in this study are simplified to illustrate the concepts in the new theory. The actual structure of 
electron tunnels can be much more complex for large molecules to model mathematically. Nevertheless, the concepts 
should be extensible and applicable to synthesizing room-temperature superconductors. 
 
 

Introduction to Electron Tunnel 
 
Electron tunnels refer to the network of electron paths between molecules in a conductor, allowing electrons to flow at the 
same potential/energy level across molecules and resulting in currents. An electron with an energy level below that of the 
electron tunnels remains confined within its orbital inside the host atom or molecule and, therefore, cannot produce current. 
To create currents in a conductor, electrons must reach a sufficient energy level to move through the electron tunnels. 
Thus, the space in a conductor is divided into two regions: an interconnected network of electron tunnels between 
molecules and isolated cells around individual atoms or molecules. In insulators, these tunnels are disconnected. 
 

 



A superconductor is a unique type of conductor where valence orbitals extend into and overlap with electron tunnels. 
Consequently, the valence electrons can naturally enter the electron tunnels without needing additional energy to elevate 
them. To illustrate the concept of electron tunnels, let’s consider a simple model. Place a proton next to a hydrogen atom 
as shown in Figure 0. At the quantum level, the electron should be found around the hydrogen atom with a high probability 
at a relatively large distance from the proton. This probability diminishes as their distance reduces, resulting in electron 
distribution probability current flowing toward the proton. At a certain distance, the electron distribution density will become 
balanced between the two protons, meaning the electron effectively flows between them. 
 

 
Figure 0, A quantum model of a hydrogen atom next to a proton.  

 
If multiple protons are packed closely together at a sufficiently small distance, an electron can move freely between them, 
creating a current and resulting in superconducting hydrogen. In this sense, a hydrogen molecule functions as a 
superconductor for the shared electron between the two protons. The electron path between the protons forms what we 
refer to as an electron tunnel. Similarly, covalent bonds between atoms can also create electron tunnels, effectively acting 
as local superconductors. 
 
In the model above, the electron in hydrogen is attracted to the proton when it is sufficiently close. At what distance does 
this attraction occur? This distance determines the formation of superconducting tunnels. While the answer can, in 
principle, be found by solving the Schrödinger equation with this model, this approach quickly becomes too complex when 
extended to more comprehensive models. Instead, a simpler approach using well-established classical physics discussed 
next, will effectively illustrate the concept of electron tunnels. 
 
As shown in Figure 1, Rb represents the distance from the nucleus center to the border (i.e., the middle for simplicity now) 
between the proton and hydrogen. Rv is the radius of the valence orbital, which may change depending on temperature.[14] 
Therefore, the problem becomes to find the Rb so that the electron will be pulled over to the proton. 
 
The electron cloud and orbital shape should undergo certain deformation as atoms come close, inducing different fields 
and bonds between them. This phenomenon will be explored in subsequent discussions, particularly in the context of 
compression bond formation. For the sake of simplicity, we are presently ignoring this effect. An attraction coefficient will be 
introduced to address the uneven attraction fields between molecules. The electron tunnels will be realized later with 

 



bonds for the interaction between molecules. Also note that valence electrons in this discussion refer to the outmost 
electrons in an atom, not necessarily in the ground state. 
 

 
Figure 1, Concept of electron tunnel illustrated using a simple model involving a hydrogen atom adjacent to a 
proton. In this model, the valence electron is attracted by both its host nucleus and the neighboring proton. The 
electron tunnel between the hydrogen atom and the proton enables the electron to move from one to the other. In 
the diagram, the blue short stroke represents the radius of the valence orbital, denoted by Rv , and the red stroke 
indicates the radius to the border between the hydrogen atom and the proton, denoted by Rb. The contours show 
the orbitals at different energy levels intersecting with a plane passing through the centers of the protons. The blue 
curves in the lower part of the figure represent the potential level of the protons as a function of the distance from 
the center of each proton. An electron in the electron tunnel may drift from one proton to the other along a path at 
the same energy level, such as the path A-B-C. 

 
To find the answer to the question above, we need to compute the energy required to raise an electron along the center 
line between the nuclei from its orbital r to the border Rb . This involves calculating the total energy difference between Rb 
and r. The electron is attracted to both its host nucleus and the adjacent proton through Coulombic force: 
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where K is Coulomb’s constant, and negative F represents the attraction between charges q1 and q2 at a distance d. The 
Coulomb force Fe to an electron along the center line between the proton and hydrogen nucleus will be 
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where Q represents the charge of a proton, e is the charge of an electron, and r indicates the orbital radius of a valence 
electron. The potential difference Eu for the electron is the work needed to move the electron against the force Fe from 
orbital r to Rb, which can be calculated by integrating the force Fe over the distance from r to Rb: 
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The difference in kinetic energy must also be taken into consideration. When an electron is circulating at a distance d from 
its nucleus, its centripetal force is 
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where m represents the mass of the electron, a is the acceleration, v indicates the velocity, and Fc is balanced by the force 
given in Equation (2), i.e., Fc = -Fe. The negative force in Equation (2) indicates an attraction. The kinetic energy at the 
border Rb becomes 
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The kinetic energy at orbital r will be 
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The kinetic energy difference between Rb and r is 
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The total energy to lift the electron from r to Rb will be 
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Equation (8) can be visualized as a 3D surface, representing the lifting energy on the r-Rb plane. Alternatively, given a 
specific value of r, it can also be illustrated by a 2D curve that shows the lifting energy as a function of Rb. To find the 
answer to the problem raised earlier, we simply need to solve Equation (8) at E = 0, and the solution is 
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This means that when the proton is placed at a distance of 5.236r (i.e., 2x2.618r) from the center of the hydrogen atom, the 
valence electron can be attracted toward the proton. Consequently, the drift can occur when the electron is at an orbital 
radius r, well below the border Rb (=2.618r). The orbital radius range between r and 2.618r is the drift zone. In other words, 
an electron can drift between two protons along the central region, which has a width of 3.236r, representing part of the 
electron tunnel between the protons. 
 
Consider a crystal with such molecules placed at this distance next to each other. The central regions between these 
molecules would connect into tunnels, allowing electrons to move freely at the same energy level, thereby forming a 
continuous electron tunnel. 

 
Figure 2, Required energy to raise an electron in a hydrogen atom to the border between the atom and a proton 
placed 2000 pm apart. The blue curve represents the energy needed to elevate an electron to the border between 
the nuclei as a function of the electron's orbital radius. The x-axis starts at the hydrogen center and extends to the 
proton on the right. Rb represents the distance to the border. In this example, its value is 1000 pm for calculating the 
lifting energy using Equation (8). The lifting energy decreases from a positive value as the electron orbital radius 
increases towards the border. Rc represents the electron radius where the required lifting energy becomes zero and 
turns negative beyond that point. A negative lifting energy value implies that the electron is no longer confined to its 

 



nucleus. The locations with negative lifting energy represent the region in the electron tunnel between the protons. 
The figure only plots the portion on the hydrogen side, with the complete picture being symmetric and mirrored 
along the border. For reference, the kinetic energy of the electron (in red) based on Equation (7), the potential 
energy (in yellow) derived from Equation (3), and the total energy (in green) are also plotted. The total energy is the 
sum of the kinetic and potential energies, representing the inverse of the lifting energy (in blue). 

 
Alternatively, we can view the problem from a different perspective by looking at Equation (8) as a curve that shows the 
energy required to raise an electron at r with a given Rb, as illustrated by the blue curve in Figure 2. The curve indicates the 
energy needed to elevate an electron to the border decreases as the electron’s orbital radius increases. The lifting energy 
reaches zero at a particular radius Rc, which can be inverted from Equation (9): 
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The interpretation of Equation (10) is that when an electron's orbital radius is greater than Rc, it can drift toward the proton 
without additional energy. This means that when a valence electron is at this radius or higher, it tends to move towards the 
proton, signifying that the electron is liberated from its host and potentially leading to the generation of currents. 
Consequently, Rc is referred to as the conducting radius, which represents the condition for initiating a current across 
molecules in a conductor, i.e., 
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where Rv refers to the orbital radius of valence electrons. In this view, the electron tunnel can be defined as the region 
above the conducting radius between molecules. Since Figure 2 only plots the curves on the hydrogen side, the space 
between Rc and Rb is just half the width of the electron tunnel. Whenever valence electrons are in this region, indicating 
they are within the electron tunnel, they can drift between molecules, creating electrical currents. 
 
The significance of Rc lies in its role as the dividing point for an electron's liberating orbital. When an electron's orbital 
radius is lower than Rc, it remains in an orbital confined to its host atom and molecule. Electrons may experience 
perturbations in their orbitals. As an electron is perturbed to a higher level, its potential energy increases at the expense of 
kinetic energy. However, the kinetic energy reduction cannot compensate for the rise in potential energy. This energy 
deficit, represented by the negative value in Figure 2's green curve, indicates that the kinetic energy decreases more than 
necessary to maintain the electron's speed at a higher level. As a result, the slower-moving electron tends to return to its 
equilibrium orbit corresponding to its energy level. Likewise, when an electron wanders into a lower energy level, the 
reduced potential energy is converted to kinetic energy. The excess kinetic energy also causes it to revert to its equilibrium 
orbit. Thus, without additional energy, an electron below Rc may experience perturbation but is still confined in its orbital 
inside its host. 
 
On the other hand, an electron with an energy level at an orbital radius greater than Rc is no longer bound to its host atom. 
When it is perturbed to a higher level, the excess kinetic energy, represented by the positive value of the green curve in 
Figure 2, propels it to an even higher level beyond the control of its host nucleus. The electron is effectively liberated and 
drifts towards the proton. Upon gaining the electron, the proton transforms into a hydrogen atom, while the nucleus of the 
original host hydrogen becomes a single proton. As a result, the hydrogen-proton setting flips to a proton-hydrogen setting. 

 



Likewise, the electron can also drift back to the initial hydrogen nucleus. Therefore, the electron becomes a shared 
electron between the two protons, similar to a covalent bond. Indeed, a covalent bond forms through a similar interaction; 
however, there is a notable difference. In an H2 molecule's covalent bond, the two electrons are bound so tightly to their 
nuclei that they cannot escape the molecule to generate currents. Thus, a solid of H2 is not a conductor. 
 
In contrast to the tightly bound, the electron in the hydrogen-proton model may not be restricted if other protons are nearby 
such as in metallic hydrogen. Indeed, to generate currents, a disconnected electron tunnel between just two molecules is 
insufficient; a well-connected electron tunnel between surrounding molecules is required. Consider a metallic hydrogen 
crystal with one or more protons. The electron tunnels between the atoms can be fully connected, creating a network for 
electron flow. An electron with an energy level within the electron tunnels can drift along the isoenergy level across 
different atoms/molecules, rather than being confined to any individual H2 molecules. The movement of electrons in the 
electron tunnels produces currents. The significance of the electron tunnels lies in their function as a shared network of 
electron paths at the same energy level, facilitating a smooth flow of electrons between molecules. 
 
In an isolated hydrogen atom, without a nearby proton, the total electron energy at any orbital level is negative and 
approaches zero at infinity. The positive energy depicted in Figure 2 is due to the influence of the nearby proton, which 
implies that the electron tunnel results from the proton's influence. 
 
The interaction discussed so far involves a hydrogen atom and an adjacent proton. Similarly, a molecule with an 
electron-hole can produce an effect similar to a proton, forming an electron tunnel with a neighboring molecule. 
Furthermore, this model will be extended and generalized later to accommodate more realistic interactions through typical 
intermolecular bonds. 
 
 

Intermolecular Bond Due to Compression 
 
Unlike in an isolated atom, the electrons of atoms and molecules in a conductor are influenced by the electric fields of 
adjacent molecules, causing the electrons to adjust their clouds and redistribute. Uneven electron distribution induces local 
electric fields, such as London dispersions,[15] resulting in various types of bonds between molecules. Molecules are held 
together in solids by these bonds. Viscosity in fluids is due to intermolecular bonds. Attractions between molecules are 
universal and can facilitate the development of electron tunnels, which is why the previously discussed model can be 
extended and generalized. 
 
As an example of intermolecular bonds, let’s explore a novel type of bond induced between molecules under pressure, 
known as the compression bond, which was predicted in a study of superfluidity.[16] The London dispersion creates 
attractions between normal helium molecules, resulting in viscous helium fluids. As helium electrons retreat to lower 
orbitals at low temperatures, the London dispersion is weakened and eventually destructed, as shown in Figure 3A. In the 
absence of intermolecular attraction, there is no viscosity, and helium molecules become superfluid. Hence, a superfluid is 
not a fluid but a collection of individual molecules. Without any attraction between molecules, a solid cannot be obtained by 
cooling the superfluid further. Pressure must be applied to obtain solid helium.[17] 
 
Helium molecules become tightly compressed under pressure. Under the electrical repulsion from adjacent molecules, the 
electron cloud of each molecule contracts along the axis through the two protons, as shown in Figure 3B. This uneven 

 



density of electron distribution in different directions generates local electrical fields with positive along the proton axis and 
negative at the periphery of the plane perpendicular to the axis. 

 
Figure 3. Compression bonds developed between helium molecules at high pressures. (A) Under normal pressures 
on Earth, superfluids can be obtained from liquid helium by lowering the temperature to the point where the London 
dispersion disappears. However, unlike most substances, solid helium cannot be produced by further reducing the 
temperature because there is no attraction to hold the molecules together. Pressure must be applied to obtain solid 
helium. (B) Under high pressures, the electron cloud of each molecule contracts along the axis through the two 
protons. This uneven distribution in electron density in different directions creates local electric fields, resulting in an 
attraction between molecules, named the compression bond. Solid helium is molecules held together by these 
bonds. 

 
Attractive forces arise between the positive and negative fields, driving the molecules to reorient themselves to minimize 
their potential energy. Eventually, the molecules achieve a minimum energy arrangement, as depicted in Figure 3B, 
resulting in the compression bonds between them. Figure 3B illustrates the smallest arrangement of two molecules held 
together by this bond. Compression bonds are responsible for holding molecules together in solid helium.[16] 
 
In the normal state of hydrogen, the covalent bond between two hydrogen atoms in an H2 molecule may be considered an 
isolated electron tunnel between the atoms, which allows the electrons to travel between them. However, the repulsion 
between H2 molecules separates the molecules at a considerable distance, preventing the local electron tunnels in H2 
molecules from connecting into a network. Without a connected network, electrons cannot move between different H2 
molecules. As a result, a normal hydrogen liquid is an insulator. However, under high pressure, hydrogen becomes 
metallic.[18-19] It is believed that the normal covalent bonds between hydrogen atoms yield compression bonds at high 
pressures,[16] resulting in interconnected electron tunnels, which transition normal H2 molecules into metallic hydrogen. 
 
Compression bonds may be prevalent in single-atom molecule substances, as nearly everything on Earth is subject to 
certain pressures. The attractive force of compression bonds facilitates the development of electron tunnels between 
molecules, similar to the mechanism discussed in the previous section. The formation of electron tunnels in most 
conductors and superconductors may be related to the development of compression bonds. 
 
 

Current, Resistance, and Superconductivity 

 



 
To understand the phenomena of current, resistance, and superconductivity, we must first correct some misconceptions 
about these concepts in traditional models, particularly the collision model for electrical resistance. Many theories and 
models implicitly assume that currents are electrons flowing in the free space between molecules in conductors. However, 
this assumption is flawed because the space between molecules in conductors is never truly free for electrons. 
 
From a large distance, an atom appears electrically neutral. When atoms are close, electrical fields are induced between 
them, resulting in various forces that hold them together. Without attractive forces between molecules, there would be no 
solids or fluids, only individual molecules, such as in superfluids. The fact that most substances exist in solids or viscous 
fluids indicates that attraction between molecules is prevalent. Therefore, the space between molecules is never a vacuum 
but is typically filled with electrical fields. 
 
With a negative charge, an electron is influenced by these fields and typically cannot move freely, either within an atom or 
molecule or between molecules in a conductor. Within an atom or molecule, an electron is confined to and moves within its 
orbital, corresponding to its energy level. Although perturbations can occur, an electron cannot change its orbital without 
exchanging energy with its surroundings, such as by emitting or absorbing photons. 
 
An atomic electron is confined by the electrical field created by its nucleus, defining an orbital. An electron tunnel can be 
perceived as a special orbital or an electron path shared between multiple molecules. For an electron to move through an 
electron tunnel, the electron must possess the corresponding energy. Below this energy level, the electron is confined to 
the host atom of an individual molecule. Above this energy level, the electron is effectively liberated from the control of the 
molecule and capable of flowing through the electron tunnel across different molecules, resulting in a current. 
 
An electron may drift along electron tunnels from one atom to the next in a different molecule, creating a current with a 
negative charge in a conductor, called electrodrift. During an electrodrift, the energy level of the electron does not change. 
Before an electron can drift in electron tunnels, it must absorb additional energy to excite into an electron tunnel. An 
electron hole is left behind after the electron drifts to the next molecule. The hole may be filled later by another electron. A 
series of drifts of an electron-hole results in a current with a positive charge, similar to the flow of a cation. Hence, currents 
can be the flows of both negative and positive charges. 
 
There is normally no current in a conductor although electron tunnels may exist. This tunnel, or the space between 
molecules, is not empty but separated by potential barriers, as illustrated in Figure 4A. For an electron to move from one 
molecule to the next, it has to overcome these energy barriers. Energy must be added to an electron to elevate it to 
electron tunnels to create a current across molecules. An electron may be raised to the electron tunnels in an electrical 
field, such as an applied voltage, or a magnetic field, as in an electrical generator. 
 
The lifting energy is the work against the Coulombic force between the electron and its host nucleus. After gaining extra 
energy, an electron can excite and flow in the electron tunnel across molecules, forming a current. Once in a while, the 
electron may fall into an electron hole. The previously stored energy will eventually dissipate through emitting 
electromagnetic waves. Therefore, the cause of electrical resistance is the loss of the energy gained from the work done 
against the Coulombic force, not the collisions between particles as conceived in the traditional model. 
 

 



 
Figure 4, Difference between normal conductors and superconductors. As shown in the figure, each atomic nucleus 
generates an electrical field that attracts the surrounding electrons. The blue curves in the lower part of the figure 
represent energy/potential level. The horizontal direction indicates the distance from the respective nucleus center, 
and the vertical direction is the potential scale. (A) At a considerable distance between two atoms/molecules, their 
electrons are separated by an energy barrier. To enable electrodrift, energy is needed to elevate electrons to the 
electron tunnel along the border, which is the cause of electrical resistance in conductors. (B) In superconductors, 
there is no such barrier as the distance between molecules is smaller such that valence orbitals intersect electron 
tunnels. This distance can be reduced by increasing pressure or decreasing temperature, pushing the electron 
tunnel lower to overlap the valence orbitals and allowing electrons to drift from one molecule to the next without 
lifting energy, as illustrated by the red path A-B. 

 
Unlike in normal conductors where electron tunnels are located at an energy level above valence orbitals, in 
superconductors, valence orbitals intersect electron tunnels. This overlap allows valence electrons to enter electron 
tunnels without a need for lifting energy to drift between molecules, as shown in Figure 4B. Thus, electrodrifts occur 
naturally in superconductors without lifting energy, resulting in zero resistance, therefore achieving superconductivity. 
Electron tunnels can be dynamically pushed lower to overlap valence orbitals by increasing pressure or decreasing 
temperature, which will be discussed in more detail later. 
 
At a temperature above 0 K, a conductor absorbs energy from and emits energy to the surroundings. At equilibrium, the 
net exchange of energy is zero. The valence electrons in a conductor should be at an average energy level above the 
ground orbitals. From the perspective of an electron, the total energy Et needed to elevate from the ground orbital to the 
electron tunnel can be broken down into two constituents: Ev the energy required to rise from the ground orbital to the 
valence orbital, and Ec the energy needed to lift from the valence orbital to the electron tunnel: 
 
 (12)  𝐸

𝑡
= 𝐸

𝑣
+ 𝐸

𝑐

 
At the equilibrium, Ev is maintained or supplied by the environment. Ec is the additional energy needed to raise the electron 
to the electron tunnel, which represents the work required to create currents in a conductor and is the cause of electrical 
resistance. When valence orbitals overlap electron tunnels, as in superconductors, the additional lifting energy is 
unnecessary for electrodrift, i.e., Ec = 0. Thus, Equation (12) can be simplified to 

 



 
 (13)  𝐸

𝑡
= 𝐸

𝑣

 
This equation indicates that the total lifting energy for electrons in superconductors is constantly supplied from the 
environment. This predicts the positive relationship between critical current density and critical temperature of 
superconductors, which will be discussed in more detail later in the critical current density section. 
 
From the environment’s perspective, the energy loss is compensated by the energy radiated from the superconductors at 
the equilibrium. The entire system is energy-conservative given there is no energy taken out of the system. Thus, although 
currents and magnetic fields exist in superconductors, their energies cannot be harvested for free. 
 
Theoretically, when a superconductor is at the absolute zero temperature, there is no energy exchange between the 
superconductor and the environment. The valence orbitals are at the ground level. Equations (12) and (13) still hold 
because 
 
 (14)  𝐸

𝑡
= 𝐸

𝑣
= 𝐸

𝑐
= 0

 
 

Extended Model for Electron Tunnel 
 
The electron tunnel concept introduced so far is based on a simplified model involving a hydrogen atom adjacent to a 
proton. Electron tunnels can be developed in various bonds resulting from molecule interactions. At small distances, the 
outer shells of electron clouds in atoms/molecules are typically distorted, resulting in electrical field variations and inducing 
intermolecular bonds. These bonds are crucial to the development of electron tunnels. It is important to note that molecular 
bonds, such as covalent bonds, enable electrons to move between atoms within individual molecules but do not allow 
electron movement across different molecules necessary for current generation. The bonds discussed here are 
intermolecular bonds, such as compression bonds, that facilitate currents across molecules through an interconnected 
network of electron tunnels in conductors. 
 
To investigate the influence of bond strength on the development of electron tunnels and to determine the extent of these 
tunnels in a conductor, we introduce a concept known as the attraction coefficient, denoted by the symbol c. This 
coefficient quantifies the strength of the bond attraction exerted on an electron by an adjacent molecule. Assume that an 
electron is attracted to its host nucleus by an equivalent charge Q. The attraction to the electron by an adjacent molecule 
with a bond strength c is modeled as if it arises from a charge of cQ. The value of c typically does not exceed 1. Using this 
coefficient, the force exerted on the electron by both molecules can be modeled. As a result, the energy level of the 
electron and the potential fields between molecules can be determined along the center line between the molecules. 
 
To estimate the energy required to lift an electron from orbital r to the border Rb, we need to include both forces exerted on 
a valence electron by two adjacent molecules in a conductor. By incorporating the coefficient c, we can refine Equation (2) 
in the previous model to 
 

 



 (15)   𝐹
𝑒

= 𝐾𝑄𝑒 1
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(2𝑅
𝑏
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⎡⎢⎢⎣
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where c ≤ 1 denotes the attraction coefficient between adjacent molecules. When c = 1, the model represents a normal 
molecule next to a molecule with an electron hole, similar to a hydrogen atom next to a proton, as described in Equation 
(2). When c = 0, it may simply represent a situation of a single molecule without adjacent molecules. When c < 0, it 
simulates molecular repulsion, which may occur between certain atoms or molecules in insulators. When 0 < c < 1, it 
models various bond strengths between molecules. Indeed, it will become clear later that the value of c signifies the 
difference between insulators, conductors, and superconductors. When c is small enough, such as c < ⅕ , the model 
represents weak bond strengths, typically found in insulators. Otherwise, when ¼ < c < 1, it simulates various bond 
strengths between molecules in conductors and superconductors. 
 
Next, let’s extend the model to include the forces from two molecules located along the center line on the farther sides of 
the two initial molecules in the crystal lattice. Equation (15) needs to be adjusted accordingly as: 
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Now, also consider the influences from two molecules further down the line, and so on. The accumulated forces exerted on 
the electron from all the molecules along the center line is the sum of the Coulomb force from each molecule: 
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where the symbol % represents the modulo operator or MOD, and N refers to the number of molecules along the line of 
the two molecules in consideration, which should be a sizable number depending on the dimensions of the conductor. In 
the crystal lattice of a conductor, molecules are surrounding this line. However, for a sizable conductor, it is reasonable to 
assume that the influences from surrounding molecules will cancel each other out. Therefore, we only need to consider the 
molecules along the line, and Equation (17) should be sufficient for the model. Additionally, the model can be further 
generalized for large molecules by interpreting Q as an equivalent positive charge that exerts the Coulombic force on the 
electron while accounting for the influence of other electrons. 
 
Now, the potential energy difference Eu or the energy needed to move the electron along the line from orbital r to the 
border Rb between the two molecules can be computed by integrating over the force provided in Equation (17) from r to Rb: 
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where 
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The kinetic energy for the electron at the distance r from the nucleus along the line can also be calculated from Equation 
(17): 
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The kinetic energy difference between Rb and r is 
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The total energy Ec to elevate the electron from orbital r to the border Rb between the two molecules is the sum of the 
potential energy and kinetic energy estimated in Equations (18) and (21), respectively: 
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It is important to note that the summation term in the equation above captures two microscopic properties of a conductor: 
the bond strength between molecules and the distance from the valence orbital to the electron tunnels. These two 
properties determine many characteristics of conductors. For easy reference later, let's call this term the "resisting 
distance". 
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The resisting distance of a conductor determines the energy required to generate currents and therefore influences the 
electrical resistivity of the conductor. This term encapsulates the differences between insulators, conductors, and 

 



superconductors. Additionally, the resisting distance governs the dynamic behavior of a conductor under varying pressures 
and temperatures. With the concepts and models established so far, we will now apply and validate them through 
observations. The next section will first explore the predictive power and role of resisting distance in explaining the 
observed properties of conductors and superconductors. 
 
 

Electrical Resistivity Originating from Resisting Distance 
 
The electrical resistance of a conductor is described in Ohm’s law, which is an empirical relation obtained from 
experiments. What are the fundamental microscopic properties of a conductor that give rise to this law? In this section, we 
will explore the relationship between a conductor’s resistivity and its macroscopic properties related to the resisting 
distance. 
 
The energy estimated in Equation (23) represents the minimum energy required to elevate a valence electron to the 
electron tunnel for creating a current. Thus, the lifting electrical potential for the electron is 
 

 (25)  𝑣 =
𝐸

𝑐

𝑒

 
where e is the charge of an electron. Assume a total voltage V is applied to the ends of a conductor with a length L and a 
cross-section area A. This voltage raises and drives n electrons through the conductor in T seconds. Hence, V provides 
the total potential to create the current of the n electrons, which relates to the potential v for driving individual electrons. At 
the microscopic scale, the voltage V applied to the conductor by a power supply, such as a battery, is through the 
accumulation of electrical charges at the ends of the conductor, which provides the potential to lift electrons near the ends. 
The lifted electrons create a potential field further into the conductor, which in turn provides the potential field to drive 
electrons further into the conductor, and so on. Therefore, V should be proportional to the lifting potential v and the number 
of electrons (n) and they can be related by introducing a coefficient p: 
 
 (26)  𝑉 = 𝑝𝑛𝑣
 
By definition, the current I created by V is 
 
 (27)  𝐼 = 𝑒𝑛

𝑇

 
Combining Equations (25), (26), and (27), we find the relation between electrical resistance R and lifting energy Ec based 
on Ohm’s law: 
 

 (28)  𝑅 = 𝑉
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𝑝𝑇𝐸
𝑐
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By definition, the resistivity of a conductor is 
 

 



 (29)  ρ = 𝑅 𝐴
𝐿 =

𝑝𝐴𝑇𝐸
𝑐
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Replacing Ec provided in Equation (23), the electrical resistivity becomes 
 
 (30)  ρ =− 𝑝𝐴𝑇𝐾𝑄

2𝐿𝑒 𝐷

 
Note, the speed of electrons drifting in a conductor is 
 
 (31)  𝑠 = 𝐿

𝑇

 
which is a property specific to a conductor. By introducing an equivalent coefficient u for the nucleus charge of molecules in 
the conductor, Q can be expressed as 
 
 (32)  𝑄 =− 𝑢𝑒
 
And, Equation (30) can be simplified to 
 
 (33)  ρ = 𝑝𝑢𝐴𝐾

2𝑠 𝐷

 
For hydrogen, u = 1. As atom size increases, the valence elections experience less influence from the host nucleus and u 
< 1. By introducing a property Z, namely microscopic resistivity, which encapsulates the Coulomb’s constant and 
microscopic properties p, u, and s specific to a conductor, 
 
 (34)  𝑍 = 𝑝𝑢𝐴𝐾

2𝑠

 
the resistivity can be simplified as 
 
 (35)  ρ = 𝑍𝐷
 
This equation indicates that the electrical resistivity of a conductor is determined by its microscopic resistivity (Z) and 
resisting distance (D). Z represents the constant properties of a conductor at the microscopic scale, while D encapsulates 
the dynamic properties: Rv, Rb, and c. D depends on the spacing between molecules and changes dynamically with 
pressure and temperature. Therefore, the dynamic behavior of the conductor’s resistivity is related to and can be explored 
through the resisting distance (D). 
 
 

Resisting Distance of Different Materials 
 
The resisting distance (D) of a conductor is a common factor of the electrical resistivity indicated in Equation (35) and the 
lift energy for electrons to create currents in the conductor implied in Equation (23). The resisting distance term captures 

 



the distinctions between insulators, conductors, and superconductors, which are explored next. However, as shown in 
Equation (24), the resisting distance is a sum of a large series, which makes it difficult to analyze. Fortunately, it can be 
easily demonstrated that this series converges quickly, even for an infinite series, because each term in the series 
converges to zero at the rate of O(n-2). Each term in Equation (22) for Dk(i) converges at the same rate as O(n-2). Besides, 
we can also prove that the terms in Du(i) converge by reformulating Equation (19) as follows: 
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where each term converges at the same rate as O(n-2). Mathematician Leonard Euler proved the convergence of the 
infinite series in the Basel problem, specifically, 𝜮(1/n2) = 𝜋2/6. As a result, each term in the series converges to C𝜋2/6, 
where C represents the constant part in the term for particular values of c and Rb. Consequently, the sum of these terms 
converges for each tuple of c and Rb. This demonstrates that the model predicts a finite electrical resistance in a conductor, 
therefore requiring a limited amount of energy to raise electrons to the electron tunnels for current generation. 
 
Analyzing the resisting distance using the entire series form in Equation (24) is challenging. As the influence on an electron 
from surrounding molecules decreases rapidly with distance, i.e., at the rate of O(n-2), the first term d in the series should 
be significant enough for the analysis: 
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Indeed, a numerical simulation indicates that the ratio of D/d converges rapidly and is bounded by a constant for any 
specific values of c and Rb. Thus, instead of working with the entire series of the resisting distance, we can just focus on 
the first term d of the series, which should be significant enough to provide insight into the entire series of the resisting 
distance. 
 

 
Table 1, Resistivities of several materials compared with the resisting distances estimated using Equation (37). The 
Resisting D column shows the resisting distance (m-1) for different materials, which are calculated using Equation 
(37), assuming a uniform value of c = 0.1. The values of Rv and Rb for each material are obtained from the ptable 
site. Specifically, the Valence Ra column used for Rv corresponds to the covalent radius, and the Border Ra column 

 

https://ptable.com/#Properties/Radius/VanDerWaals
https://ptable.com/#Properties/Radius/VanDerWaals


for Rb is based on the Van de Waals radius or empirical radius for Ca, Fe, and Al. For simplicity, we did not include 
the common factor of property Z in the calculation. 

 
First, let’s explore the effect of Rv and Rb on the resisting distance. Equation (37) allows us to estimate the resisting 
distance for a conductor using its microscopic properties Rv and Rb, along with bond/attraction coefficient c. Unfortunately, 
the values for c are currently unavailable for most materials. To provide a rough range in this case, a uniform value of c = 
0.1 is used to estimate the resisting distances for several materials. By using the values of Rv and Rb obtained from the 
ptable site, we calculated the corresponding resisting distances for these materials and compiled them in the Resisting D 
column of Table 1. 
 
The results exhibit a strong correlation between the electrical resistivity (column Resistivity) and the resisting distance 
(column Resistive D), even using the uniform value of c = 0.1. The results should be more accurate if actual values for c 
are available for the evaluation. Notably, non-conductive materials such as silicon and diamond exhibit much higher 
resisting distances than metals. Theoretically, the electrical resistance of any material can be computed using Equation 
(35) as long as accurate values are available for the microscopic properties Z, Rv, Rb, and c. Nevertheless, these results 
demonstrate preliminary evidence to support the validity of the resistance distance model. 
 
Now, let's examine the significance of the attraction coefficient c on resisting distance. The attraction coefficient 
characterizes the bond strength for the attraction between molecules. According to Equation (37), if there is no bond 
between molecules (i.e., c = 0) or the bond strength is weak (e.g., c < ⅕), the resisting distance is always greater than zero, 
as indicated by the blue curve in Figure 5. It suggests the absence of electron tunnels, or disconnected tunnels, which 
could be the situation in insulators where bond strength is weak between certain molecules. Even though an electron may 
be ejected from its host atom with high energy, there are no fully connected tunnels for it to smoothly flow along. 

 
Figure 5, Resisting distance d (m-1) for different values of c, calculated using Equation (37) with molecules placed 
2000 pm apart and a fixed Rb = 1000 pm. The curves show that the resisting distance decreases as Rv increases 
towards Rb. The orbital radius at zero resisting distance is where the curves intersect the x-axis, denoted by Rc, 
indicating the starting point of entering the electron tunnel. The width of the electron tunnel increases with c. When 
c = 0, the resisting distance is always greater than zero, as indicated by the blue curve, suggesting that there is no 

 



electron tunnel, which could be the case for insulators. A superconductor is a conductor with Rv ≥ Rc, indicating that 
the valence orbital overlaps the electron tunnel. 

 
Electron tunnels will develop in substances with high attraction coefficients (e.g., c > ¼). As c increases, the width of the 
electron tunnels increases accordingly. For instance, when c = ⅓, there are small electron tunnels, as indicated by the red 
curve. When c = 1, the electron tunnels become wider, as shown by the yellow curve in Figure 5. 
 
In normal conductors, electrons have to be energized into electron tunnels. The larger the gaps between valence orbitals 
and electron tunnels, the more energy is required to elevate valence electrons to the electron tunnels, and the higher the 
resistivity. This means that the resistivity of a conductor usually decreases with increasing c, as the gaps between electron 
tunnels and valence orbitals are typically small with wider electron tunnels. When electron tunnels are wide enough to 
overlap valence orbitals, valence electrons can enter and flow in the electron tunnels without lifting energy, eliminating 
resistance and achieving superconductivity. 
 
Now, let’s explore the condition of superconductivity. Because superconductors have no resistance, i.e., ⍴ = 0, with 
Equation (37), the superconductivity condition can be expressed as 
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where Rc denotes the conducting radius, which is the point where electron orbitals begin to overlap electron tunnels. In 
Figure 5, this is also the point at which the resisting distance curve intersects the x-axis, or the resisting distance becomes 
zero, i.e., D = 0. Thus, whenever Rv ≥ Rc, superconductivity is achieved. By solving Equation (38) for Rc at different values 
of c, we found: 
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The results imply that electrodrift or current may occur in an orbital well below the border. For instance, with c = ½, valence 
orbitals will overlap electron tunnels when Rv > 0.621Rb, indicating the condition for superconductivity in this situation. The 
reason that electrodrift can take place below the border is due to the pulling from adjacent molecules. This typically occurs 
when the attraction between molecules is strong. 
 
When c = 1, a valence electron experiences an attraction from an adjacent molecule equivalent to the force it would 
experience from its host molecule at the same distance. This scenario may occur when the adjacent molecule has an 
electron hole, which can occur after an electrodrift. This implies that if a valence electron is situated next to a molecule with 
an electron hole, it can drift to the next molecule without requiring additional lifting energy when the electron is at an orbital 
above 0.382 of the distance to the border. In a typical bond between molecules, c < 1. For example, when c = ⅓, the 
electrodrift will occur at 0.785 of the border distance. 
 

 



Therefore, the difference between insulators, conductors, and superconductors can be identified based on the solution to 
Equation (38). For a given material with a specific value of c, if the equation has no real solution, the material is an 
insulator. If real solutions exist, the material is either a conductor or a superconductor, depending on whether Rv < Rc or Rv 
≥ Rc. Hence, the resisting distance model provides a quantitative mechanism to distinguish between them based on their 
microscopic properties. 
 
Note that c represents the strength of a bond. Like molecular distance, bond strength is not fixed for a given substance but 
is a dynamic parameter influenced by pressure and temperature. Thus, a ceramic can become a superconductor under 
high pressure. This dynamic aspect will be explored next. 
 
 

Dynamic Behavior of Electrical Resistivity 
 
The resistivity of a conductor generally rises as temperature increases and falls as pressure increases. Conventional 
superconductors usually manifest at low temperatures, while high-temperature superconductors are often achieved at 
elevated pressures. These dynamic tendencies find explication within the framework of the tunnel theory we have 
formulated thus far. 
 
As shown in Equation (35), the electrical resistivity of a conductor is proportional to the resisting distance at the 
microscopic scale. Therefore, the behavior of electrical resistivity is determined by the microscopic properties of c, Rv, and 
Rb, which are encapsulated in the resisting distance. These microscopic properties are dynamically influenced by pressure 
and temperature. Hence, insights into the dynamic behavior of electrical resistance can be gained by exploring the 
response of c, Rv, and Rb to the changes in pressure and temperature bridged through the resisting distance model 
expressed in Equation (24). 
 
This dynamic behavior can be easily understood by analyzing the relationship between c, Rv, Rc, and Rb. The width of 
electron tunnels is determined primarily by the bond strength c. Therefore, for a given c, Rc positively relates to Rb. With a 
fixed molecular distance, represented by Rb, increasing the valence orbital radius, indicated by Rv, will reduce the gaps 
between Rb and Rv as well as between Rc and Rv, leading to a decrease in resisting distance and electrical resistivity, as 
shown by the curves in Figure 5. On the other hand, with a fixed valence orbital radius, reducing molecular spacing will 
also minimize the resistivity. The resistivity reduction in both cases is due to the decrease in Rc - Rv, representing the gaps 
between electron tunnels and valence orbitals. With this principle in mind, it becomes easy to understand the dynamic 
behavior of electrical resistivity related to the changes in pressure and temperature. 
 
As pressure increases, the distance between molecules will be monotonically reduced, leading to a decrease in Rb. 
Without a change in the radius of valence orbitals (Rv), reducing Rb effectively diminishes the gaps between electron 
tunnels Rc and valence orbitals Rv therefore minimizing D and eventually resistivity. This highlights the intricate relationship 
between pressure and resistivity, which explains why resistivity decreases with increasing pressure and how many 
superconductors are achieved under high pressures, even at very high temperatures and for some insulators. 
 
The reduction of molecular spacing will also induce various intermolecular forces, such as the development of compression 
bonds. This effect increases the attraction coefficient c. When c rises, the electron tunnel expands. The widening of 

 



electron tunnels also reduces the gaps (Rc - Rv) between valence orbitals and electron tunnels and further diminishes the 
resisting distance and ultimately the electrical resistivity. 
 
Other microscopic properties, such as electron orbital radius r, or more significantly the valence orbital radius Rv, are more 
sensitive to changes in temperature. As temperature rises, valence electrons become more excited and move to higher 
orbitals, causing Rv to increase. When there is enough pressure to confine the space between molecules, increasing Rv will 
reduce the gap between Rc and Rv, and therefore diminish D and resistivity. This elucidates why high-temperature 
superconductors can be obtained at high pressures. 
 
However, as temperature increases in the absence of confining pressure, the increased repulsion of excited electrons 
between adjacent molecules pushes them apart, leading to an increase in Rb. Under normal pressure on Earth, which is 
relatively constant and weak compared to the repulsion between molecules at high temperatures, Rb typically rises faster 
than Rv, which in turn expands the gap between Rc and Rv. Consequently, D increases, as illustrated in Figure 6. This 
explains why the resistivity of a conductor typically rises with temperature increases and conventional superconductors 
achieved at low temperatures are usually destroyed at high temperatures. 
 
When the temperature falls, electrons tend to retreat to lower orbitals, and repulsion between molecules weakens. The 
normal pressure on Earth becomes more dominant, creating a compression effect equivalent to increasing pressure. As Rb 
decreases, Rc is pushed lower faster than the reduction of Rv, minimizing the gaps between Rc and Rv and eventually 
causing valence orbitals to overlap electron tunnels. This explains the positive relationship between resistivity and 
temperature, and conventional superconductors achieved at low temperatures. In other words, the effect of lowering 
temperature is equivalent to increasing pressure. 

 
Figure 6, Transition of the electrical resistance phase. (A) Conventional superconductors are typically observed at 
low temperatures, where molecules are so close that the valence electrons can enter the electron tunnel without 
lifting energy, allowing electrodrift to occur freely. (B) As the temperature rises, molecules are pushed apart due to 
the increasing molecular repulsion caused by excited electrons at higher orbitals. The conducting radius increases 
faster than the valence orbital. Eventually, the valence orbital falls below the electron tunnel, destroying 
superconductivity. 

 



 
In summary, the distance between molecules is influenced by pressure and temperature. Pressure plays the primary role in 
determining the molecular spacing, and temperature changes can create a similar effect to pressure. Molecular distances 
determine the gaps between electron tunnels and valence orbitals and influence the induction of intermolecular bonds. The 
bond strength also controls the width of electron tunnels, affecting the gaps between valence orbitals and electron tunnels. 
These gaps correlate with resistivity in conductors, while there is no such gap in superconductors. The bond strength is 
also the primary factor that distinguishes insulators from conductors. Therefore, the resistance state of matter is 
dynamically determined by both pressure and temperature. 
 
So far, the electron tunnel theory provides a unified framework for understanding the dynamic nature of insulators, 
conductors, and superconductors. In the next few sections, let’s apply this theory to explain the phenomena observed in 
superconductors. 
 
 

The Cause of the Meissner Effect 
 
A superconductor is not just a perfect conductor but is more significant because of the Meissner effect, in which an 
external magnetic field is expelled from the superconductor during the transition to the superconducting phase.[9] It is 
important to note that a magnetic field created by induction requires a change in magnetic flux based on Faraday's law of 
induction.[20-21] The Meissner effect is observed during the transition to the superconducting phase in the presence of an 
existing magnetic field, where there is no change in magnetic flux. 
 
In a normal conductor, there is no current because valence electrons are below electron tunnels. After the transition to the 
superconducting phase, valence orbitals overlap electron tunnels. Valence electrons can enter the electron tunnels and 
flow across molecules without lifting, resulting in resistance-free currents, i.e., superconductivity. The internal magnetic 
fields induced by these random currents cancel each other locally. However, in the presence of an external magnetic field, 
the directions of the currents are deflected by the Lorentz force: 
 
 (40)  𝐹 = 𝑞(𝐸 + 𝑣 × 𝐵)
 
where q represents the electrical charge, v is the velocity of the charge, B is the magnetic field, E is the electric field, and F 
is the force exerted on the charge.[22-24] When observing along the direction of the applied magnetic field, a moving electron 
is deflected and circulates in a clockwise direction, resulting in a magnetic field. This field counteracts the applied magnetic 
field inside the superconductor and reinforces the applied field outside. The net result appears as if the applied field were 
expelled from the superconductor. 
 
In both the Meissner effect and normal Faraday’s induction, the magnetic fields are generated by the flow of charges 
deflected by the Lorentz force. Thus, the Meissner effect is also related to induction. The primary difference lies in the fact 
that random currents naturally exist in superconductors due to valence electrons being present within electron tunnels. In 
contrast, there is normally no current in conductors, and electrons must be raised to electron tunnels to create currents. 
During a normal Faraday’s induction, electrons are elevated by a change in the magnetic flux. However, due to the 
resistance in conductors, the inducted currents are not sustainable. Induction also varies in superconductors when the 

 



external field changes. Since resistance is zero in superconductors, the induced currents can fluctuate to compensate for 
the external field, up to a certain extent limited by the critical current density discussed next. 
 
 

The Limit in Critical Current Density 
 
The critical current density refers to the maximum current density that a superconductor can tolerate. According to Stefan 
Boltzmann's law, the radiation power P emitted by a blackbody is directly proportional to the fourth power of its absolute 
temperature T: 
 

 (41)  𝑃 = 𝑝𝑇4

 
where p is the Stefan-Boltzmann constant. This law can also be derived by integrating Planck’s law over the frequency and 
then over the solid angle. At equilibrium, the rate of energy absorption of a body is equal to the emission.[14] Therefore, the 
body also absorbs energy from surroundings at a rate proportional to the fourth power of the temperature. The current 
density in a body, such as in a superconductor, corresponds to the density of electrodrifts. Each electrodrift starts from an 
electron excitation as a result of energy absorption. The electron’s energy of superconductors is absorbed from the 
environment given by Equation (13). Consequently, the electrodrift/current density should be also proportional to the fourth 
power of its temperature. By introducing a conversion efficiency C, the current density can be expressed as 
 

 (42)  𝐽 = 𝐶𝑇4

 
where C is a property specific to a superconductor. This equation indicates that the maximum current density of a 
superconductor is proportional to and limited by the fourth power of the temperature, meaning that the critical temperature 
determines the critical current density of the superconductor. This explains why conventional low-temperature 
superconductors typically have lower critical current densities when compared with high-temperature superconductors. 
 
 

Critical Magnetic Field Limited by Critical Current Density 
 

When subjected to an external magnetic field, a superconductor will lose its superconductivity once the applied field 
exceeds a certain intensity, known as the critical magnetic field. At low intensities, an external magnetic field is expelled 
from a superconductor in the Meissner effect. As the intensity of the external field rises, the internal field increases 
accordingly to counteract the applied field. 
 
The internal field of a superconductor arises from counter-currents inside the superconductor, and the field intensity 
correlates to the density of the counter-currents. As suggested in the last section, there is a limit to the maximum current 
density in a superconductor at a specific temperature. Beyond the critical current density, the external field is no longer fully 
canceled inside the superconductor, and the applied field cannot be entirely expelled in the Meissner effect. 
 
Once the critical current is exceeded, the moving charges, including the orbital electrons, are deflected by the Lorentz 
force in the remaining external field. The orientation of electron orbitals surrounding each atom is deformed in a way that 

 



the electron clouds are compressed along the direction of the applied field or flattened perpendicular to the direction of the 
applied field, as illustrated in Figure 7B. Valence electrons play a significant role in superconductivity and are affected the 
most due to less tangling effect from other electrons in the host atom. When the applied field is over the critical field, the 
valence electrons will withdraw from the electron tunnels, destroying the superconductivity. 

 
Figure 7, Superconductivity destroyed in a magnetic field over a critical intensity. (A) In a weak or absence of an 
external magnetic field, the applied field can be completely canceled by the internal field in a superconductor due to 
the Meissner effect. The electron clouds of valence electrons extend normally into electron tunnels. 
Superconductivity may withstand a magnetic field up to a critical intensity. (B) However, an external field over the 
critical intensity cannot be completely offset due to the limit of critical current density. Orbital electrons are deflected 
by the Lorentz force in the remaining field and divert their orbiting plane in the direction perpendicular to the 
external field. This action compresses the electron clouds like squashed lanterns. The deformation of orbitals 
causes the valence electrons to withdraw from the electron tunnels, destroying superconductivity. 

 
Therefore, the failure of superconductivity above the critical magnetic field is due to the limit of critical current density. As 
predicted by Equation (42), a higher temperature corresponds to a higher critical current density. Higher critical current 
density, in turn, sustains a higher critical magnetic field. This explains the strong correlation observed between critical 
temperatures and critical magnetic fields. 
 
 

Molecular Structure Determining Type-II Superconductor 
 
A type-II superconductor exhibits at least two critical fields: Bc1 and Bc2.[25-27] Normal superconductivity is observable in an 
applied magnetic field below Bc1. The superconductivity is destroyed at a field intensity over Bc2. Between the two fields, 
the superconductivity is partially destroyed in certain regions of the superconductor. These non-superconductive islands 
are known as magnetic vortices. The density of the vortex increases as the intensity of the applied magnetic field rises. 
Type-II superconductors are usually made of alloys or compounds. 
 
Figure 8 illustrates the crystal structure of a type-II superconductor composed of two distinct types of molecules. Normal 
superconductivity is observable in a magnetic field B < Bc1, as shown in Figure 8A. This occurs because the applied field is 

 



below the critical fields for all molecules, and every molecule is superconducting. Superconductivity is destroyed in a field 
B > Bc2, as illustrated in Figure 8C. Bc2 represents the maximum critical field for all materials in the superconductor, and 
when the field exceeds Bc2, superconductivity is destroyed for every type of material. 
 

 
Figure 8, Responses of a type-II superconductor to different intensities of external magnetic fields. (A) In a 
magnetic field below the minimum critical intensity, electron tunnels between all molecules are fully connected, and 
superconductivity is maintained entirely. (B) In a field between the minimum and maximum critical intensities, some 
valence orbitals separate from the electron tunnels, such as the small molecule at the center, resulting in vortices or 
superconducting holes in the mixed state around the small molecules. (C) Under a field above the maximum critical 
intensity, the superconductivity is destroyed as all the valence orbitals withdraw from the electron tunnels. 
Additionally, note that the deformation of the electron clouds is affected by the direction of the applied field, which 
explains why the critical fields of a type-II superconductor may vary depending on the direction of the external field. 

 
In a field between Bc1 and Bc2, as depicted in Figure 8B, the superconductivity for the central molecule is destroyed while 
other molecules surrounding it remain superconductive. The center part becomes a non-superconductive island, 
corresponding to the magnetic vortex which allows the magnetic flux to penetrate for flux pinning effect. 
 
The crystal structure of type-II superconductors typically has different arrangements of molecules in various directions, 
especially with compounds. Magnetic fields applied in various directions may cause diverse deflection/flattening effects on 
the electron clouds. Consequently, superconductivity may be destroyed at different field intensities depending on the 
direction of the applied field. This effect is also illustrated in Figure 8. Two critical magnetic fields are observed with an 
external field applied at a small angle. Different critical fields may be observed with a field applied from another direction. 
As the geometry of the deformed electron clouds changes with the direction of the applied field, the valence electrons may 
withdraw from the electron tunnels at different field intensities in various directions. For instance, the superconductivity of 
YBCO can withstand an external magnetic field of up to 250 T when aligned parallel to the CuO2 planes, or the a-b plane 
of YBCO crystals.[28] However, the superconductivity is destroyed by an external field of 120 T when aligned perpendicular 
to the CuO2 planes, or along the c-axis direction of the crystals. 
 
The destruction of superconductivity is caused by the withdrawal of valence orbitals from electron tunnels under the 
influence of a magnetic field. This effect can be related to specific bonds and may vary depending on the field's direction. 
Type-II superconductors are typically composed of alloys or compounds, where each type of molecule can form one or 

 



more bonds with adjacent molecules in various directions. Consequently, the more complex the molecular structures in a 
superconductor, the greater the variations in the critical destruction fields. 
 
The molecular structure of compounds is often asymmetrical due to various bonds in different directions. Consequently, the 
structure of electron tunnels also varies with direction, resulting in different critical fields in various orientations. The two 
critical fields frequently mentioned in the literature likely represent the minimum and maximum of all the critical magnetic 
fields present in a type-II superconductor. In the mixed state, vortices form in regions where superconductivity is partially 
destroyed. As the intensity of the applied magnetic field increases and various critical fields are successively exceeded, the 
vortex density increases. 
 
 

Correlation between Superconductor, Density, and State of Matter 
 
According to the proposed theory, superconductivity arises from the overlap between valence orbitals and electron tunnels, 
which is associated with smaller molecular spacing and, consequently, higher density. Thus, the theory predicts that 
superconductivity is more likely to be found in high-density elements. This prediction aligns well with the superconductive 
elements found in the periodic table. Figure 9 highlights known superconductive elements in blue boxes, which correspond 
well with the high-density elements shown in Figure 10. 
 

 
Figure 9, Known superconductive elements (Tc from Peter J. Lee’s page). 
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Figure 10, The densities of elements (screenshots from ptable site). 

 

 
Figure 11, The states of elements at 3500 K (screenshots from ptable site). 
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Highly repulsive molecules are likely to push each other apart, resulting in larger molecular distances and a greater 
tendency to become gaseous. In contrast, smaller molecular spacing is typically associated with less repulsion between 
molecules, leading to lower volatility and higher melting and boiling points. Therefore, the theory also predicts that 
superconductive elements correlate with elements having high boiling points, a prediction also supported by observations. 
Figure 11 highlights elements that remain in the solid or liquid phase at 3500 K, which corresponds well with the 
superconductive elements shown in Figure 9. 
 
 

Electrodrift Explanation of Flux Quantization 
 
Magnetic flux measures the total magnetic field passing through a given area. A looping current generates magnetic flux, 
and the smallest unit of flux is created by a single electron circulating an area, making magnetic flux quantized. The value 
of the flux quantum Φ0  can be determined by applying gauge transformations to the Schrödinger equation. Although the 
phase of the wave function depends on the gauge, the physical predictions do not, allowing us to conclude that the value 
of Φ0  is a gauge-invariant quantity: 
 
 (43)  Φ

0
= ℎ

2𝑒

 
where both h and e are fundamental physical constants for the Planck constant and the charge of an electron, respectively. 
This prediction may be validated using a superconductor in a donut shape. 
 
Based on the proposed theory, currents or electrodrifts in a superconductor originate from electron orbital transitions. An 
electron jump simultaneously creates an excited electron and an electron hole behind it. The drifting of these charges 
results in a flow of negative charge and another of positive charge. The minimum flux is produced by the two flows moving 
in opposite directions around a donut-shaped superconductor, which is equivalent to two electrons traveling in the same 
direction around the donut. Consequently, the theory predicts the minimum flux in a donut-shaped superconductor to be 
twice the flux quantum Φ0. This prediction is confirmed experimentally by B. S. Deaver and W. M. Fairbank,[29] and 
independently by R. Doll and M. Näbauer.[30 
 
 

Prediction of Electrical Resistance State of Matter 
 
As discussed previously, the dynamic behavior of electrical resistivity is influenced by pressure and temperature. This 
implies that materials can transition between insulating, conducting, and superconducting phases. For instance, insulators 
can become superconductors under sufficient pressure, as observed in many high-temperature superconductors. Mercury, 
which is a conductor at normal temperatures, transitions to a superconductor at low temperatures. Just as the state of 
matter can transition from solid to fluid, the proposed theory predicts that the electrical state of matter can also transition 
between insulating, conducting, and superconducting at different pressures and temperatures. 
 
The electrical phase transition of matter is related to the presence and connectivity of electron tunnels between molecules. 
The characteristics of electron tunnels are determined by the attraction/bond coefficient between molecules, which is 
determined by pressure and temperature. Therefore, electrical phase transitions result from changes in pressure and 

 



temperature and can be represented in a phase diagram with transition boundaries, similar to phase diagrams for states of 
matter. 
 
Pressure influences electrical phase transitions through two key factors: molecular spacing and bond strength. Increasing 
pressure reduces the distance between molecules, inducing bonds between them. This reduction in molecular spacing 
decreases the gaps between electron tunnels and valence orbitals, thereby minimizing resistivity and potentially achieving 
superconductivity. At closer distances, electron clouds are influenced by adjacent molecules, causing them to redistribute 
and form new bonds. 
 
As illustrated in Figure 12, the width of electron tunnels increases with rising bond strength, represented by the attraction 
coefficient, which typically reduces the gaps between electron tunnels and valence orbitals. Both of these effects facilitate 
the transition of the electrical phase from insulating to conducting and/or superconducting. Additionally, as discussed 
earlier, decreasing temperature has an equivalent effect to increasing pressure by causing compression. Therefore, the 
electrical resistance state of matter can transition from one phase to another in response to changes in pressure and/or 
temperature. 

 
Figure 12, Relationship between electron tunnel width and intermolecular bond strength influenced by the attraction 
coefficient c using a model of two molecules 2000 pm apart. Each curve indicates the energy level of an electron as 
a function of the electron orbital radius for a specific attraction coefficient, calculated using Equation (23) with a 
fixed Rb of 1000 pm. The x-axis starts at a molecule center and extends toward the adjacent molecule to the right. 
The figure plots only a section on the left half of the two molecules. The electron energy level rises as the orbital 
radius increases from the molecule center to the border. When c = 1, the energy level elevates from negative 
values, turning positive at a radius of 382 pm, as illustrated by the yellow curve. A positive energy level indicates 
the electron is no longer confined by its host nucleus and can flow between the molecules. Thus, the region of the 
positive energy level represents the electron tunnel. Note that with c = 1, the curve simulates the attraction from the 
next molecule with an electron hole, creating the widest electron tunnel. When c = ⅓, the energy level turns positive 
at a radius of 785 pm, resulting in a narrower electron tunnel, as shown by the red curve. When c = 0, the energy 
level remains entirely negative, indicating no electron tunnel, as illustrated by the blue curve. 

 

 



For a conventional superconductor, the critical point typically refers to the transition temperature observed at normal 
pressure on Earth. However, multiple critical temperatures may be observed at different pressures for the same material. 
Each critical temperature represents a point on the superconducting transition boundary at a specific pressure. Collectively, 
these critical points depict the superconducting transition boundary in a phase diagram, as illustrated by the blue curve in 
Figure 13. 
 

 
Figure 13, Electrical resistance phase diagram depicting superconducting, conducting, and insulating transition 
boundaries, along with the transition boundaries of conventional shearing resistance states. The transition 
boundary for superconductivity is the curve connecting all the tuples of critical temperatures and pressures of the 
superconductor. For most substances, this boundary typically resides on the high-pressure and low-temperature 
side of room conditions, which explains why room-temperature superconductors are less common due to 
unfavorable conditions on Earth. The overlap between insulating and superconducting transition boundaries 
indicates there is a direct transition from insulators to superconductors. 

 
The transition boundary can also be theoretically determined using the resisting distance model. Equation (35) can be 
interpreted as a 3D surface representing resistivity over the domains of pressure and temperature. The transition boundary 
appears as a curve on the pressure-temperature plane where the surface intersects the plane at zero resistivity, as 
described in Equation (38), i.e., at ⍴ = 0. The solution to Equation (38) can be expressed in the form of 
 
 (44)  𝑅

𝑐
= 𝑓(𝑐,  𝑅

𝑏
)

 
where each term of Rc(t,p), Rb(t,p), and c(t,p) is a function of temperature t and pressure p. Equation (38) does not always 
have a real solution. This likely occurs when the intermolecular attraction is weak, e.g., c < ⅕, which corresponds to the 
insulating phase. However, when it does have a real solution for a given c, all the points of (t,p) on the solution (44) define 
the transition boundary between the conducting and superconducting phases. Any point (t,p) with Rv(t,p) > Rc(t,p) must be 
on the superconducting side, while points with Rv(t,p) < Rc(t,p) are on the conducting side. For instance, a real solution to 
Equation (38) at c = 1 is: 
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In this case, the material will exhibit superconductivity whenever the condition of pressure and temperature extends the 
valence orbital to a radius of 0.382 or greater of the distance to the border. Otherwise, it will behave as a conductor. 
 
Since the decrease in temperature has an effect equivalent to the increase in pressure, the transition boundary should 
generally trend from low pressure and temperature toward high pressure and temperature, as illustrated by the blue curve 
in Figure 13. This determines why high-temperature superconductors are typically obtained under high pressures. 
 
For conductors, the difference between Rc(t,p) and Rv(t,p) represents the gap between electron tunnels and valence 
orbitals, which is proportional to electrical resistivity. A large difference between Rc(t,p) and Rv(t,p) indicates more energy is 
required to raise the valence electrons to the electron tunnels, therefore higher resistivity. 
 
The electron tunnels in an insulator cannot connect into a continuous network when the bonds between certain molecules 
are so weak that the attraction coefficient is less than 0.225. Therefore, all the points (t,p) on the temperature-pressure 
plane where c(t,p) = 0.225 define the insulating boundary, as illustrated by the purple curve in Figure 13. This boundary 
should be to the high-temperature side of the superconducting boundary. There may be overlaps between superconducting 
and insulating boundaries. If there is an overlap, the overlap is the portion of the transition boundary from insulating to 
superconducting directly. A triple transition point may also exist in an electrical resistance phase diagram, as illustrated in 
Figure 13 at the point when the purple curve intersects with the blue curve. 
 
The prediction of electrical phase transition is supported by the observed behavior of conductors and superconductors in 
response to changes in pressure and temperatures. For instance, the critical temperature of H2S superconductors 
increases with pressure, ranging from 23 K at 100 GPa to 150 K at 200 GPa.[31] The transition boundaries of many 
materials can be measured or validated in most high-pressure laboratories, given the right equipment and expertise. 
 
Despite being predicted to be an ordinary state of matter, superconductors are not as common as conductors on Earth 
because the standard conditions of pressures and temperatures on Earth are not favorable for superconductivity. However, 
Superconductivity is theoretically expected to be more common under high pressures. So, superconductors should prevail 
inside large planets, which might be responsible for the origin of the planet’s magnetic fields. This may explain why the 
planet's magnetic fields are popular in large planets. As a consequence, a hypothesis has been proposed that the 
geomagnetic field originated from superconductors inside Earth.[32] 

 
 

Synthesizing Room-Temperature Superconductors 
 
The elegance of the proposed theory lies in its ability to provide a unified framework for understanding insulators, 
conductors, and superconductors, and more importantly, in offering practical guidelines for synthesizing superconductors. 
By comprehending the microscopic basis of superconductivity, the synthesis of room-temperature superconductors is no 
longer a random endeavor but becomes a deliberate engineering task. For practical applications, it is essential for 
superconductors to function under normal Earth conditions. The main challenge in achieving superconductivity is the 
repulsion between molecules, which intensifies as the temperature rises, especially for symmetrical molecules. The key 

 



strategy in synthesizing superconductors is to compress the spacing between molecules. Pressure not only reduces 
molecular distances but also promotes bonding between molecules, both of which are critical for achieving 
superconductivity. The following principles can significantly narrow the search for room-temperature superconductors: 
 

● The engineering strategy should leverage molecular attractions to counteract repulsions between molecules instead of 
replying to external pressures. By designing the molecule structures to induce attractive forces between specific atoms, 
it should be feasible to bring together certain atoms into proximity, facilitating their valence orbitals to extend into the 
electron tunnels and therefore achieving superconductivity. 

● Electronegativity[33] plays a significant role in the choice of elements for synthesizing superconductors. It is important to 
avoid elements with extremely high electronegativity, as they would strongly retain electrons, hindering the flow of 
electrons across molecules. Conversely, elements with too weak electronegativity may be insufficient to establish the 
necessary intermolecular attractions needed to develop wider electron tunnels. It is advantageous to choose elements 
in a narrow range of electronegativities. By maintaining a close range of electronegativities among the selected 
elements, it becomes possible to strike a balance that promotes the formation of interconnected electron tunnels. 

● The connectivity of electron tunnels is also critical for superconductivity. Excessively complex and large compounds 
have the potential to disrupt the continuity of electron tunnels. Connected electron tunnels should be at the same 
potential/energy level. In a crystal made of complex molecules, the field intensities between different regions are likely 
uneven, as in most insulators, which may disrupt the continuity of electron tunnels. 

● The molecular structure of compounds or alloys that incorporate a combination of large and small atoms gives rise to 
uneven intermolecular tensions, thereby increasing the likelihood of fostering compressions between certain atoms and 
the development of electron tunnels. A smaller atom may pull in nearby atoms, introducing compression between 
certain atoms that can facilitate the development of wider electron tunnels to overlap valence orbitals. 

 
 

Summary 
 
The challenges encountered by conventional theories when attempting to account for the phenomena of resistivity and 
superconductivity under high pressures prompt us to realize the flawed presumptions at a deeper foundational level. These 
misapprehensions might be a contributing factor to the prolonged inability to fully comprehend the mechanisms of 
superconductivity and to search or synthesize room-temperature superconductors. By departing from these fallacies, an 
avenue opens to formulate an alternative theory. 
 
The proposed theory provides insight into resistivity and superconductivity at the microscopic scale while offering a 
comprehensive explanation of the properties and phenomena of conductors and superconductors. Its prediction of 
electrical resistance states of matter provides a unifying framework that connects different electrical states through the 
concept of electron tunnels predicted in the models. Superconductivity is an ordinary state of matter in this framework, 
although it is not commonly observed in normal conditions on Earth. 
 
The significance of this theory lies in its provision of practical guidelines for engineering room-temperature 
superconductors. Most superconductors to date have been obtained under extreme conditions, such as low temperatures 
or high pressures, which are impractical for many applications. To achieve room-temperature superconductivity, we need to 
take a different approach. This involves designing molecular structures that can harness molecular attraction to overcome 
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the repulsion and bring molecules closer. This strategy would eliminate the need for external pressure and make it possible 
to achieve superconductivity under ordinary conditions on Earth. 
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