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Abstract

Superconductors hold immense potential for various applications and could profoundly impact humanity. Despite
extensive research, a room-temperature superconductor of practical value has yet to be achieved. The BCS theory
cannot account for high-temperature superconductors. This issue may arise from the traditional model inaccurately
attributing resistance to particle collisions of electron flow in conductors. This research proposes an alternative
theory. According to the shear resistance, the state of matter can be a solid or a fluid. Likewise, the electrical
resistance state of the same substance can be an insulator, a conductor, or a superconductor at different pressures
and temperatures. These states are primarily determined by electron tunnels, which develop through molecular
interactions. Within electron tunnels, electrons can move across molecules at the same potential level, resulting in
currents. In conductors, electrons are confined to their molecules below the energy level of electron tunnels; energy
is needed to elevate them into these tunnels to produce currents, causing electrical resistance. The resistance of a
conductor can be decreased by compressing molecular spacing, as it minimizes the gap between valence orbitals
and electron tunnels. With additional pressures, the gap can be further reduced to zero in superconductors,
resulting in the intersection between valence orbitals and electron tunnels. Therefore, electrons can enter the
tunnels without lifting energy, leading to zero resistance. This explains the inverse relationship between resistivity
and pressure and why many high-temperature superconductors are achieved under high pressures. Molecular
spacing decreases at low temperatures, as electrons move to lower orbitals. It reduces the pressure between
molecules, mimicking the compressing effect. This elucidates the correlation between resistivity and temperature
and why conventional superconductors are observed at low temperatures. In insulators, the electron tunnels are
disconnected due to large molecular spacing. This spacing can be reduced with high pressures, thereby joining
these tunnels. This is why some ceramics become superconductors under high pressures. This theory unifies
insulators, conductors, and superconductors as dynamic resistance states of matter at different pressures and
temperatures. The distinction between these states lies in the extent and connectivity of electron tunnels and the
gaps between the tunnels and valence orbitals. A crucial insight from this theory for synthesizing room-temperature
superconductors is the need to compress molecular distances. The significant barrier is the repulsion between
molecules. Overcoming this repulsion with external pressures, as currently done to achieve most high-temperature
superconductors, is impractical for most applications. An alternative approach may involve engineering molecular
structures to leverage molecular attractions between certain molecules to overcome the repulsion.

Introduction

Since its discovery in 1911, superconductivity has been a popular research field due to its extraordinary properties and
promising applications.!"? For instance, energy shortages are a key factor limiting economic growth, as seen in the training
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of Al models. Ultimately, energy constraints the development of civilization across the universe. Fusion reactions offer a
promising solution for a clean energy supply. One of the primary tasks in designing the tokamak fusion reactor is to use
magnetic fields to confine the charged particles within the reactor. Generating these magnetic fields with normal conductor
coils consumes so much energy. Superconductors are crucial for designing a tokamak fusion reactor capable of achieving
breakeven energy production.

Cooper pairs of electrons, bound together by electron-phonon interactions, were proposed as the mechanism behind
superconductivity in BCS (Bardeen-Cooper-Schrieffer) theory.®! However, there are two key challenges to this theory. The
first challenge concerns the assumption that a free electron attracts nearby nuclei, creating a high-density region of
positive charge and thereby facilitating the electron-phonon interaction that binds Cooper pairs. In reality, each nucleus is
surrounded by electron clouds that repel nearby electrons at short distances. As a result, instead of attracting surrounding
nuclei, a free electron would tend to push them away, creating a low-density region of positive charge. This contradicts the
basic premise of the electron-phonon interaction, raising questions about the physical foundation of the Cooper pair
formation.

The second challenge to BCS theory arises from the observation of superconductivity at high temperatures.
Electron-phonon interactions are generally believed to be significant only at low temperatures, as the vibrations of
electrons and the crystal lattice weaken these interactions at higher temperatures, leading to the breakdown of
superconductivity. However, since 1986, numerous superconductors have been discovered that exhibit superconductivity
at temperatures well above the theoretical maximum predicted by BCS theory.*® Furthermore, most high-temperature
superconductors require high pressures to function, yet BCS theory fails to explain the positive effect of pressure on
superconductivity.

BCS theory also fails to explain many observed phenomena in superconductors, which will be discussed later in this
article.”! The issue may lie in the incorrect assumptions underlying the Drude model of electrical resistance, which is
implicitly incorporated into the BCS framework. According to the Drude model, conductors contain a sea of free electrons
that flow through the material to generate electric current. Electrical resistance arises from collisions between these free
electrons and the atomic lattice, with each collision scattering the electrons and dissipating energy. In BCS theory, it is
assumed that the formation of Cooper pairs minimizes these electron-lattice collisions, thereby reducing resistance and
enabling superconductivity.

However, the assumptions underlying the Drude model are not fully proven. According to the conventional model of
conductors, free electrons form a "sea of electrons" that acts as a kind of glue between the atomic nuclei, creating metallic
bonds. The stability of a conductor’s structure relies on the strength of these metallic bonds. But what happens if this sea
of electrons is removed from the conductor? The atomic nuclei, which form the lattice, would repel each other, causing the
structure of the conductor to collapse. The concept of a free-moving electron sea implies that the bonding "glue" holding
the metallic lattice together is not localized. This raises the question: how can the conductor's structure remain stable with
such an inherently unstable form of bonding? In reality, conductors are highly stable and can withstand significant shear
and tension forces. This calls into question the validity of both the electron sea model and the traditional understanding of
metallic bonds.

In addition, the traditional model of electrical resistance faces similar challenges at high pressures. The Drude model posits
that electrical resistance arises from collisions between flowing electrons and the lattice in conductors.!'” If this model were



accurate, high-density materials should exhibit higher resistance. As pressure increases, the atoms in a conductor are
packed more tightly, leading to more frequent collisions between electrons and the lattice, and thus, higher resistivity.
However, experimental observations reveal the opposite: resistivity actually decreases with increasing pressure.!"'""® This
trend holds all materials, from insulators to conductors to superconductors. Under high pressure, resistance continues to
drop and can eventually reach zero, as seen in many high-temperature superconductors. Notably, many of
superconductors are not metals, such as ceramics, which become superconducting only under high pressure. These
findings challenge the assumptions of the Drude model, suggesting that a more nuanced understanding is needed to
explain electrical resistance and superconductivity.

The failures of these theories on resistivity and superconductivity at high pressures may not be coincidental but a
consequence of incorrect assumptions in the collision model for electrical resistance and misconceptions of electron sea.
These may have misled researchers and hindered theoretical and practical progress in the field, particularly in searching
for room-temperature superconductors.

Rather than treating resistivity and superconductivity as distinct states of matter, we believe they should share the same
physical mechanism. An alternative theory is proposed in this study with the introduction of a concept for the electron
tunnel, which develops between molecules in materials at a close distance. The resistivity of substances is determined by
the spacing between molecules, a dynamic variable influenced by pressure and temperature. Therefore, electrical
resistivity correlates with pressure and temperature, which determine the electrical state of matter.

In the following sections, we will introduce key concepts that form the foundation of our theory, using simplified models. By
examining the crystal structure of simple molecules, we can develop mathematical models that predict the existence of
electron tunnels and explain the properties and behaviors of both conductors and superconductors. These models suggest
that superconductivity is not an exceptional state, but rather a common phase of matter, particularly at high pressures.
Furthermore, the transition between different electrical phases—superconducting, conducting, and insulating—can be
understood as a result of changes in the spacing between molecules, which are influenced by pressure and temperature.
These models provide valuable insights into electrical resistivity and offer guidance for overcoming the challenges in the
quest for room-temperature superconductors.

Note that the models used in this study are simplified to illustrate the concepts in the new theory. The actual structure of
electron tunnels can be much more complex for large molecules to model mathematically. Nevertheless, the concepts
should be extensible and applicable to synthesizing room-temperature superconductors.

Introduction to Electron Tunnel

Electron tunnels refer to the network of electron paths between molecules in a conductor, allowing electrons to flow at the
same potential/energy level across molecules and resulting in currents. An electron with an energy level below that of the
electron tunnels remains confined within its orbital inside the host atom or molecule and, therefore, cannot produce current.
To create currents in a conductor, electrons must reach a sufficient energy level to move through the electron tunnels.
Thus, the space in a conductor is divided into two regions: an interconnected network of electron tunnels between
molecules and isolated cells around individual atoms or molecules. In insulators, these tunnels are disconnected.



A superconductor is a unique type of conductor where valence orbitals extend into and overlap with electron tunnels.
Consequently, the valence electrons can naturally enter the electron tunnels without needing additional energy to elevate
them. To illustrate the concept of electron tunnels, let's consider a simple model. Place a proton next to a hydrogen atom
as shown in Figure 0. At the quantum level, the electron should be found around the hydrogen atom with a high probability
at a relatively large distance from the proton. This probability diminishes as their distance reduces, resulting in electron
distribution probability current flowing toward the proton. At a certain distance, the electron distribution density will become
balanced between the two protons, meaning the electron effectively flows between them.

Figure 0, A quantum model of a hydrogen atom next to a proton.

If multiple protons are packed closely together at a sufficiently small distance, an electron can move freely between them,
creating a current and resulting in superconducting hydrogen. In this sense, a hydrogen molecule functions as a
superconductor for the shared electron between the two protons. The electron path between the protons forms what we
refer to as an electron tunnel. Similarly, covalent bonds between atoms can also create electron tunnels, effectively acting
as local superconductors.

In the model above, the electron in hydrogen is attracted to the proton when it is sufficiently close. At what distance does
this attraction occur? This distance determines the formation of superconducting tunnels. While the answer can, in
principle, be found by solving the Schrédinger equation with this model, this approach quickly becomes too complex when
extended to more comprehensive models. Instead, a simpler approach using well-established classical physics discussed
next, will effectively illustrate the concept of electron tunnels.

As shown in Figure 1, R, represents the distance from the nucleus center to the border (i.e., the middle for simplicity now)
between the proton and hydrogen. R, is the radius of the valence orbital, which may change depending on temperature.'!
Therefore, the problem becomes to find the R, so that the electron will be pulled over to the proton.

The electron cloud and orbital shape should undergo certain deformation as atoms come close, inducing different fields
and bonds between them. This phenomenon will be explored in subsequent discussions, particularly in the context of
compression bond formation. For the sake of simplicity, we are presently ignoring this effect. An attraction coefficient will be
introduced to address the uneven attraction fields between molecules. The electron tunnels will be realized later with



bonds for the interaction between molecules. Also note that valence electrons in this discussion refer to the outmost
electrons in an atom, not necessarily in the ground state.

energy level
energy level

Figure 1, Concept of electron tunnel illustrated using a simple model involving a hydrogen atom adjacent to a
proton. In this model, the valence electron is attracted by both its host nucleus and the neighboring proton. The
electron tunnel between the hydrogen atom and the proton enables the electron to move from one to the other. In
the diagram, the blue short stroke represents the radius of the valence orbital, denoted by R,, and the red stroke
indicates the radius to the border between the hydrogen atom and the proton, denoted by R,. The contours show
the orbitals at different energy levels intersecting with a plane passing through the centers of the protons. The blue
curves in the lower part of the figure represent the potential level of the protons as a function of the distance from
the center of each proton. An electron in the electron tunnel may drift from one proton to the other along a path at
the same energy level, such as the path A-B-C.

To find the answer to the question above, we need to compute the energy required to raise an electron along the center
line between the nuclei from its orbital r to the border R,. This involves calculating the total energy difference between R,
and r. The electron is attracted to both its host nucleus and the adjacent proton through Coulombic force:

where K is Coulomb’s constant, and negative F represents the attraction between charges g, and q, at a distance d. The
Coulomb force F, to an electron along the center line between the proton and hydrogen nucleus will be

A 1
= (2Rb—r)2

where Q represents the charge of a proton, e is the charge of an electron, and r indicates the orbital radius of a valence
electron. The potential difference E, for the electron is the work needed to move the electron against the force F, from
orbital r to R,, which can be calculated by integrating the force F, over the distance from rto R,:




R

b

3) E =- f F dx
R

=— fbKQe

1 1
- - dx
X (2Rb—x)2 ]

1 1 2
- KQe[7+ 2R —r R_]

b b

The difference in kinetic energy must also be taken into consideration. When an electron is circulating at a distance d from
its nucleus, its centripetal force is

where m represents the mass of the electron, a is the acceleration, v indicates the velocity, and F, is balanced by the force
given in Equation (2), i.e., F, = -F,. The negative force in Equation (2) indicates an attraction. The kinetic energy at the
border R, becomes

The total energy to lift the electron from rto R, will be

8 E=E+E
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Equation (8) can be visualized as a 3D surface, representing the lifting energy on the r-R, plane. Alternatively, given a
specific value of r, it can also be illustrated by a 2D curve that shows the lifting energy as a function of R,. To find the
answer to the problem raised earlier, we simply need to solve Equation (8) at E = 0, and the solution is

@ R =2Er

~ 2.618r

This means that when the proton is placed at a distance of 5.236r (i.e., 2x2.618r) from the center of the hydrogen atom, the
valence electron can be attracted toward the proton. Consequently, the drift can occur when the electron is at an orbital
radius r, well below the border R, (=2.618r). The orbital radius range between r and 2.618r is the drift zone. In other words,
an electron can drift between two protons along the central region, which has a width of 3.236r, representing part of the
electron tunnel between the protons.

Consider a crystal with such molecules placed at this distance next to each other. The central regions between these
molecules would connect into tunnels, allowing electrons to move freely at the same energy level, thereby forming a
continuous electron tunnel.

Required Energy to Lift Electron to Border
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Figure 2, Required energy to raise an electron in a hydrogen atom to the border between the atom and a proton
placed 2000 pm apart. The blue curve represents the energy needed to elevate an electron to the border between
the nuclei as a function of the electron's orbital radius. The x-axis starts at the hydrogen center and extends to the
proton on the right. R, represents the distance to the border. In this example, its value is 1000 pm for calculating the
lifting energy using Equation (8). The lifting energy decreases from a positive value as the electron orbital radius
increases towards the border. R, represents the electron radius where the required lifting energy becomes zero and
turns negative beyond that point. A negative lifting energy value implies that the electron is no longer confined to its



nucleus. The locations with negative lifting energy represent the region in the electron tunnel between the protons.
The figure only plots the portion on the hydrogen side, with the complete picture being symmetric and mirrored
along the border. For reference, the kinetic energy of the electron (in red) based on Equation (7), the potential
energy (in yellow) derived from Equation (3), and the total energy (in green) are also plotted. The total energy is the
sum of the kinetic and potential energies, representing the inverse of the lifting energy (in blue).

Alternatively, we can view the problem from a different perspective by looking at Equation (8) as a curve that shows the
energy required to raise an electron at r with a given R,, as illustrated by the blue curve in Figure 2. The curve indicates the
energy needed to elevate an electron to the border decreases as the electron’s orbital radius increases. The lifting energy
reaches zero at a particular radius R, which can be inverted from Equation (9):

(10) R = 3‘2in

The interpretation of Equation (10) is that when an electron's orbital radius is greater than R,, it can drift toward the proton
without additional energy. This means that when a valence electron is at this radius or higher, it tends to move towards the
proton, signifying that the electron is liberated from its host and potentially leading to the generation of currents.
Consequently, R, is referred to as the conducting radius, which represents the condition for initiating a current across
molecules in a conductor, i.e.,

(1) R 2R

where R, refers to the orbital radius of valence electrons. In this view, the electron tunnel can be defined as the region
above the conducting radius between molecules. Since Figure 2 only plots the curves on the hydrogen side, the space
between R, and R, is just half the width of the electron tunnel. Whenever valence electrons are in this region, indicating
they are within the electron tunnel, they can drift between molecules, creating electrical currents.

The significance of R, lies in its role as the dividing point for an electron's liberating orbital. When an electron's orbital
radius is lower than R, it remains in an orbital confined to its host atom and molecule. Electrons may experience
perturbations in their orbitals. As an electron is perturbed to a higher level, its potential energy increases at the expense of
kinetic energy. However, the kinetic energy reduction cannot compensate for the rise in potential energy. This energy
deficit, represented by the negative value in Figure 2's green curve, indicates that the kinetic energy decreases more than
necessary to maintain the electron's speed at a higher level. As a result, the slower-moving electron tends to return to its
equilibrium orbit corresponding to its energy level. Likewise, when an electron wanders into a lower energy level, the
reduced potential energy is converted to kinetic energy. The excess kinetic energy also causes it to revert to its equilibrium
orbit. Thus, without additional energy, an electron below R, may experience perturbation but is still confined in its orbital
inside its host.

On the other hand, an electron with an energy level at an orbital radius greater than R, is no longer bound to its host atom.
When it is perturbed to a higher level, the excess kinetic energy, represented by the positive value of the green curve in
Figure 2, propels it to an even higher level beyond the control of its host nucleus. The electron is effectively liberated and
drifts towards the proton. Upon gaining the electron, the proton transforms into a hydrogen atom, while the nucleus of the
original host hydrogen becomes a single proton. As a result, the hydrogen-proton setting flips to a proton-hydrogen setting.



Likewise, the electron can also drift back to the initial hydrogen nucleus. Therefore, the electron becomes a shared
electron between the two protons, similar to a covalent bond. Indeed, a covalent bond forms through a similar interaction;
however, there is a notable difference. In an H, molecule's covalent bond, the two electrons are bound so tightly to their
nuclei that they cannot escape the molecule to generate currents. Thus, a solid of H, is not a conductor.

In contrast to the tightly bound, the electron in the hydrogen-proton model may not be restricted if other protons are nearby
such as in metallic hydrogen. Indeed, to generate currents, a disconnected electron tunnel between just two molecules is
insufficient; a well-connected electron tunnel between surrounding molecules is required. Consider a metallic hydrogen
crystal with one or more protons. The electron tunnels between the atoms can be fully connected, creating a network for
electron flow. An electron with an energy level within the electron tunnels can drift along the isoenergy level across
different atoms/molecules, rather than being confined to any individual H, molecules. The movement of electrons in the
electron tunnels produces currents. The significance of the electron tunnels lies in their function as a shared network of
electron paths at the same energy level, facilitating a smooth flow of electrons between molecules.

In an isolated hydrogen atom, without a nearby proton, the total electron energy at any orbital level is negative and
approaches zero at infinity. The positive energy depicted in Figure 2 is due to the influence of the nearby proton, which
implies that the electron tunnel results from the proton's influence.

The interaction discussed so far involves a hydrogen atom and an adjacent proton. Similarly, a molecule with an
electron-hole can produce an effect similar to a proton, forming an electron tunnel with a neighboring molecule.
Furthermore, this model will be extended and generalized later to accommodate more realistic interactions through typical
intermolecular bonds.

Intermolecular Bond Due to Compression

Unlike in an isolated atom, the electrons of atoms and molecules in a conductor are influenced by the electric fields of
adjacent molecules, causing the electrons to adjust their clouds and redistribute. Uneven electron distribution induces local
electric fields, such as London dispersions,!" resulting in various types of bonds between molecules. Molecules are held
together in solids by these bonds. Viscosity in fluids is due to intermolecular bonds. Attractions between molecules are
universal and can facilitate the development of electron tunnels, which is why the previously discussed model can be
extended and generalized.

As an example of intermolecular bonds, let's explore a novel type of bond induced between molecules under pressure,
known as the compression bond, which was predicted in a study of superfluidity.'™ The London dispersion creates
attractions between normal helium molecules, resulting in viscous helium fluids. As helium electrons retreat to lower
orbitals at low temperatures, the London dispersion is weakened and eventually destructed, as shown in Figure 3A. In the
absence of intermolecular attraction, there is no viscosity, and helium molecules become superfluid. Hence, a superfluid is
not a fluid but a collection of individual molecules. Without any attraction between molecules, a solid cannot be obtained by
cooling the superfluid further. Pressure must be applied to obtain solid helium.'"!

Helium molecules become tightly compressed under pressure. Under the electrical repulsion from adjacent molecules, the
electron cloud of each molecule contracts along the axis through the two protons, as shown in Figure 3B. This uneven



density of electron distribution in different directions generates local electrical fields with positive along the proton axis and
negative at the periphery of the plane perpendicular to the axis.

A, Free Helium in Superfluid B, Compression Bonding in Solid

Figure 3. Compression bonds developed between helium molecules at high pressures. (A) Under normal pressures
on Earth, superfluids can be obtained from liquid helium by lowering the temperature to the point where the London
dispersion disappears. However, unlike most substances, solid helium cannot be produced by further reducing the
temperature because there is no attraction to hold the molecules together. Pressure must be applied to obtain solid
helium. (B) Under high pressures, the electron cloud of each molecule contracts along the axis through the two
protons. This uneven distribution in electron density in different directions creates local electric fields, resulting in an
attraction between molecules, named the compression bond. Solid helium is molecules held together by these
bonds.

Attractive forces arise between the positive and negative fields, driving the molecules to reorient themselves to minimize
their potential energy. Eventually, the molecules achieve a minimum energy arrangement, as depicted in Figure 3B,
resulting in the compression bonds between them. Figure 3B illustrates the smallest arrangement of two molecules held
together by this bond. Compression bonds are responsible for holding molecules together in solid helium.!"®

In the normal state of hydrogen, the covalent bond between two hydrogen atoms in an H, molecule may be considered an
isolated electron tunnel between the atoms, which allows the electrons to travel between them. However, the repulsion
between H, molecules separates the molecules at a considerable distance, preventing the local electron tunnels in H,
molecules from connecting into a network. Without a connected network, electrons cannot move between different H,
molecules. As a result, a normal hydrogen liquid is an insulator. However, under high pressure, hydrogen becomes
metallic.'®' It is believed that the normal covalent bonds between hydrogen atoms yield compression bonds at high
pressures,!'® resulting in interconnected electron tunnels, which transition normal H, molecules into metallic hydrogen.

Compression bonds may be prevalent in single-atom molecule substances, as nearly everything on Earth is subject to
certain pressures. The attractive force of compression bonds facilitates the development of electron tunnels between
molecules, similar to the mechanism discussed in the previous section. The formation of electron tunnels in most
conductors and superconductors may be related to the development of compression bonds.

Current, Resistance, and Superconductivity



To understand the phenomena of current, resistance, and superconductivity, we must first correct some misconceptions
about these concepts in traditional models, particularly the collision model for electrical resistance. Many theories and
models implicitly assume that currents are electrons flowing in the free space between molecules in conductors. However,
this assumption is flawed because the space between molecules in conductors is never truly free for electrons.

From a large distance, an atom appears electrically neutral. When atoms are close, electrical fields are induced between
them, resulting in various forces that hold them together. Without attractive forces between molecules, there would be no
solids or fluids, only individual molecules, such as in superfluids. The fact that most substances exist in solids or viscous
fluids indicates that attraction between molecules is prevalent. Therefore, the space between molecules is never a vacuum
but is typically filled with electrical fields.

With a negative charge, an electron is influenced by these fields and typically cannot move freely, either within an atom or
molecule or between molecules in a conductor. Within an atom or molecule, an electron is confined to and moves within its
orbital, corresponding to its energy level. Although perturbations can occur, an electron cannot change its orbital without
exchanging energy with its surroundings, such as by emitting or absorbing photons.

An atomic electron is confined by the electrical field created by its nucleus, defining an orbital. An electron tunnel can be
perceived as a special orbital or an electron path shared between multiple molecules. For an electron to move through an
electron tunnel, the electron must possess the corresponding energy. Below this energy level, the electron is confined to
the host atom of an individual molecule. Above this energy level, the electron is effectively liberated from the control of the
molecule and capable of flowing through the electron tunnel across different molecules, resulting in a current.

An electron may drift along electron tunnels from one atom to the next in a different molecule, creating a current with a
negative charge in a conductor, called electrodrift. During an electrodrift, the energy level of the electron does not change.
Before an electron can drift in electron tunnels, it must absorb additional energy to excite into an electron tunnel. An
electron hole is left behind after the electron drifts to the next molecule. The hole may be filled later by another electron. A
series of drifts of an electron-hole results in a current with a positive charge, similar to the flow of a cation. Hence, currents
can be the flows of both negative and positive charges.

There is normally no current in a conductor although electron tunnels may exist. This tunnel, or the space between
molecules, is not empty but separated by potential barriers, as illustrated in Figure 4A. For an electron to move from one
molecule to the next, it has to overcome these energy barriers. Energy must be added to an electron to elevate it to
electron tunnels to create a current across molecules. An electron may be raised to the electron tunnels in an electrical
field, such as an applied voltage, or a magnetic field, as in an electrical generator.

The lifting energy is the work against the Coulombic force between the electron and its host nucleus. After gaining extra
energy, an electron can excite and flow in the electron tunnel across molecules, forming a current. Once in a while, the
electron may fall into an electron hole. The previously stored energy will eventually dissipate through emitting
electromagnetic waves. Therefore, the cause of electrical resistance is the loss of the energy gained from the work done
against the Coulombic force, not the collisions between particles as conceived in the traditional model.
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Figure 4, Difference between normal conductors and superconductors. As shown in the figure, each atomic nucleus
generates an electrical field that attracts the surrounding electrons. The blue curves in the lower part of the figure
represent energy/potential level. The horizontal direction indicates the distance from the respective nucleus center,
and the vertical direction is the potential scale. (A) At a considerable distance between two atoms/molecules, their
electrons are separated by an energy barrier. To enable electrodrift, energy is needed to elevate electrons to the
electron tunnel along the border, which is the cause of electrical resistance in conductors. (B) In superconductors,
there is no such barrier as the distance between molecules is smaller such that valence orbitals intersect electron
tunnels. This distance can be reduced by increasing pressure or decreasing temperature, pushing the electron
tunnel lower to overlap the valence orbitals and allowing electrons to drift from one molecule to the next without
lifting energy, as illustrated by the red path A-B.

Unlike in normal conductors where electron tunnels are located at an energy level above valence orbitals, in
superconductors, valence orbitals intersect electron tunnels. This overlap allows valence electrons to enter electron
tunnels without a need for lifting energy to drift between molecules, as shown in Figure 4B. Thus, electrodrifts occur
naturally in superconductors without lifting energy, resulting in zero resistance, therefore achieving superconductivity.
Electron tunnels can be dynamically pushed lower to overlap valence orbitals by increasing pressure or decreasing
temperature, which will be discussed in more detail later.

At a temperature above 0 K, a conductor absorbs energy from and emits energy to the surroundings. At equilibrium, the
net exchange of energy is zero. The valence electrons in a conductor should be at an average energy level above the
ground orbitals. From the perspective of an electron, the total energy E; needed to elevate from the ground orbital to the
electron tunnel can be broken down into two constituents: E, the energy required to rise from the ground orbital to the
valence orbital, and E, the energy needed to lift from the valence orbital to the electron tunnel:

(12) E =E +E
t v c

At the equilibrium, E, is maintained or supplied by the environment. E. is the additional energy needed to raise the electron
to the electron tunnel, which represents the work required to create currents in a conductor and is the cause of electrical
resistance. When valence orbitals overlap electron tunnels, as in superconductors, the additional lifting energy is
unnecessary for electrodrift, i.e., E, = 0. Thus, Equation (12) can be simplified to



(13) E =E

This equation indicates that the total lifting energy for electrons in superconductors is constantly supplied from the
environment. This predicts the positive relationship between critical current density and critical temperature of
superconductors, which will be discussed in more detail later in the critical current density section.

From the environment’s perspective, the energy loss is compensated by the energy radiated from the superconductors at
the equilibrium. The entire system is energy-conservative given there is no energy taken out of the system. Thus, although
currents and magnetic fields exist in superconductors, their energies cannot be harvested for free.

Theoretically, when a superconductor is at the absolute zero temperature, there is no energy exchange between the
superconductor and the environment. The valence orbitals are at the ground level. Equations (12) and (13) still hold
because

(14) E =E =E =0

Extended Model for Electron Tunnel

The electron tunnel concept introduced so far is based on a simplified model involving a hydrogen atom adjacent to a
proton. Electron tunnels can be developed in various bonds resulting from molecule interactions. At small distances, the
outer shells of electron clouds in atoms/molecules are typically distorted, resulting in electrical field variations and inducing
intermolecular bonds. These bonds are crucial to the development of electron tunnels. It is important to note that molecular
bonds, such as covalent bonds, enable electrons to move between atoms within individual molecules but do not allow
electron movement across different molecules necessary for current generation. The bonds discussed here are
intermolecular bonds, such as compression bonds, that facilitate currents across molecules through an interconnected
network of electron tunnels in conductors.

To investigate the influence of bond strength on the development of electron tunnels and to determine the extent of these
tunnels in a conductor, we introduce a concept known as the attraction coefficient, denoted by the symbol ¢. This
coefficient quantifies the strength of the bond attraction exerted on an electron by an adjacent molecule. Assume that an
electron is attracted to its host nucleus by an equivalent charge Q. The attraction to the electron by an adjacent molecule
with a bond strength ¢ is modeled as if it arises from a charge of cQ. The value of ¢ typically does not exceed 1. Using this
coefficient, the force exerted on the electron by both molecules can be modeled. As a result, the energy level of the
electron and the potential fields between molecules can be determined along the center line between the molecules.

To estimate the energy required to lift an electron from orbital r to the border R,, we need to include both forces exerted on
a valence electron by two adjacent molecules in a conductor. By incorporating the coefficient ¢, we can refine Equation (2)
in the previous model to



(15) F, = KQe
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where ¢ < 1 denotes the attraction coefficient between adjacent molecules. When ¢ = 1, the model represents a normal
molecule next to a molecule with an electron hole, similar to a hydrogen atom next to a proton, as described in Equation
(2). When ¢ = 0, it may simply represent a situation of a single molecule without adjacent molecules. When ¢ < 0, it
simulates molecular repulsion, which may occur between certain atoms or molecules in insulators. When 0 < ¢ < 1, it
models various bond strengths between molecules. Indeed, it will become clear later that the value of c¢ signifies the
difference between insulators, conductors, and superconductors. When c is small enough, such as ¢ < %, the model
represents weak bond strengths, typically found in insulators. Otherwise, when %2 < ¢ < 1, it simulates various bond
strengths between molecules in conductors and superconductors.

Next, let’'s extend the model to include the forces from two molecules located along the center line on the farther sides of
the two initial molecules in the crystal lattice. Equation (15) needs to be adjusted accordingly as:

(16) F = KQe

L _ c + c _ 1
P (ZRb—r)z (ZRb+r)2 (4Rb—r)2

Now, also consider the influences from two molecules further down the line, and so on. The accumulated forces exerted on
the electron from all the molecules along the center line is the sum of the Coulomb force from each molecule:

i%Z C(i+1)%2
(17) F = KQeZ - >

(le +r) (2G+1R,-7)

where the symbol % represents the modulo operator or MOD, and N refers to the number of molecules along the line of
the two molecules in consideration, which should be a sizable number depending on the dimensions of the conductor. In
the crystal lattice of a conductor, molecules are surrounding this line. However, for a sizable conductor, it is reasonable to
assume that the influences from surrounding molecules will cancel each other out. Therefore, we only need to consider the
molecules along the line, and Equation (17) should be sufficient for the model. Additionally, the model can be further
generalized for large molecules by interpreting Q as an equivalent positive charge that exerts the Coulombic force on the
electron while accounting for the influence of other electrons.

Now, the potential energy difference E, or the energy needed to move the electron along the line from orbital r to the
border R, between the two molecules can be computed by integrating over the force provided in Equation (17) from rto Ry;

k 0/2 (i+1)%2
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The kinetic energy for the electron at the distance r from the nucleus along the line can also be calculated from Equation
(17):

N %2 (i+1)%2
20 E =— KQe rc _ rc
(20) r 2 Eo (2iR,+r)* (2G+DR,~7)°

The kinetic energy difference between R, and ris

N
(21) E =—-F Z D,
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) (+D%2 %2 .
i+1)%2 — %2
D% (c IR, %

22) DM =

(2(i+1)Rb—r)2 B (Zin+Rb)2 B (Zin+r)z

The total energy E. to elevate the electron from orbital r to the border R, between the two molecules is the sum of the
potential energy and kinetic energy estimated in Equations (18) and (21), respectively:

(23) E =E +E

N
=320, + D, 0]

It is important to note that the summation term in the equation above captures two microscopic properties of a conductor:
the bond strength between molecules and the distance from the valence orbital to the electron tunnels. These two
properties determine many characteristics of conductors. For easy reference later, let's call this term the "resisting
distance".

N
(24) D= E]O[Du(i) +D,(0)]

The resisting distance of a conductor determines the energy required to generate currents and therefore influences the
electrical resistivity of the conductor. This term encapsulates the differences between insulators, conductors, and



superconductors. Additionally, the resisting distance governs the dynamic behavior of a conductor under varying pressures
and temperatures. With the concepts and models established so far, we will now apply and validate them through
observations. The next section will first explore the predictive power and role of resisting distance in explaining the
observed properties of conductors and superconductors.

Electrical Resistivity Originating from Resisting Distance

The electrical resistance of a conductor is described in Ohm’s law, which is an empirical relation obtained from
experiments. What are the fundamental microscopic properties of a conductor that give rise to this law? In this section, we
will explore the relationship between a conductor’s resistivity and its macroscopic properties related to the resisting
distance.

The energy estimated in Equation (23) represents the minimum energy required to elevate a valence electron to the
electron tunnel for creating a current. Thus, the lifting electrical potential for the electron is

E
(25) v=-—=

where e is the charge of an electron. Assume a total voltage V is applied to the ends of a conductor with a length L and a
cross-section area A. This voltage raises and drives n electrons through the conductor in T seconds. Hence, V provides
the total potential to create the current of the n electrons, which relates to the potential v for driving individual electrons. At
the microscopic scale, the voltage V applied to the conductor by a power supply, such as a battery, is through the
accumulation of electrical charges at the ends of the conductor, which provides the potential to lift electrons near the ends.
The lifted electrons create a potential field further into the conductor, which in turn provides the potential field to drive
electrons further into the conductor, and so on. Therefore, V should be proportional to the lifting potential v and the number
of electrons (n) and they can be related by introducing a coefficient p:

(26) V = pnv
By definition, the current / created by V'is

(27) 1=

Combining Equations (25), (26), and (27), we find the relation between electrical resistance R and lifting energy E, based
on Ohm’s law:

4 c
(28) R=—F=—

By definition, the resistivity of a conductor is
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Replacing E, provided in Equation (23), the electrical resistivity becomes

_ ATKQ
(30) p = 25D

Note, the speed of electrons drifting in a conductor is
(31) s=-—

which is a property specific to a conductor. By introducing an equivalent coefficient u for the nucleus charge of molecules in
the conductor, Q can be expressed as

(32) Q =—ue
And, Equation (30) can be simplified to

_ puldK
(33) p=245p

For hydrogen, u = 1. As atom size increases, the valence elections experience less influence from the host nucleus and u
< 1. By introducing a property Z, namely microscopic resistivity, which encapsulates the Coulomb’s constant and
microscopic properties p, u, and s specific to a conductor,

_ pudK
(34) ==

the resistivity can be simplified as

(35) p=12D
This equation indicates that the electrical resistivity of a conductor is determined by its microscopic resistivity (Z) and
resisting distance (D). Z represents the constant properties of a conductor at the microscopic scale, while D encapsulates
the dynamic properties: R,, R,, and ¢. D depends on the spacing between molecules and changes dynamically with

pressure and temperature. Therefore, the dynamic behavior of the conductor’s resistivity is related to and can be explored
through the resisting distance (D).

Resisting Distance of Different Materials

The resisting distance (D) of a conductor is a common factor of the electrical resistivity indicated in Equation (35) and the
lift energy for electrons to create currents in the conductor implied in Equation (23). The resisting distance term captures



the distinctions between insulators, conductors, and superconductors, which are explored next. However, as shown in
Equation (24), the resisting distance is a sum of a large series, which makes it difficult to analyze. Fortunately, it can be
easily demonstrated that this series converges quickly, even for an infinite series, because each term in the series
converges to zero at the rate of O(n?). Each term in Equation (22) for D,(i) converges at the same rate as O(n*). Besides,
we can also prove that the terms in D,(i) converge by reformulating Equation (19) as follows:

2Ci%2 R —r ZC(HH%Z r—R
b @ = (Zin+r)((2?ij-Rb) (2(i+1)Rh—r§(2iRl;)+Rb)

(36)

where each term converges at the same rate as O(n?). Mathematician Leonard Euler proved the convergence of the
infinite series in the Basel problem, specifically, X(1/n?) = 7%/6. As a result, each term in the series converges to Cz?/6,
where C represents the constant part in the term for particular values of ¢ and R,. Consequently, the sum of these terms
converges for each tuple of ¢ and R,. This demonstrates that the model predicts a finite electrical resistance in a conductor,
therefore requiring a limited amount of energy to raise electrons to the electron tunnels for current generation.

Analyzing the resisting distance using the entire series form in Equation (24) is challenging. As the influence on an electron
from surrounding molecules decreases rapidly with distance, i.e., at the rate of O(n), the first term d in the series should
be significant enough for the analysis:

37 d =l + 2c + rc _ 3c+1
( ) r ZRb—T (ZRb—T)Z Rb

Indeed, a numerical simulation indicates that the ratio of D/d converges rapidly and is bounded by a constant for any
specific values of ¢ and R,. Thus, instead of working with the entire series of the resisting distance, we can just focus on
the first term d of the series, which should be significant enough to provide insight into the entire series of the resisting
distance.

Name Symbol Border Ra Valence Ra Resisting D (1/m) Resistivity (m/MS)

Silicon Si 210 11 5.3TE+13 1.00E+03
Diamond C 170 7T 8.50E+11 1.00E+01
Aluminum Al 125 118 1.87TE+O7T 2.62E-02
Calcium Ca 180 174 9. 00E+DGE 3.45E-02
Iran Fe 140 125 2. 42E+08 1.00E-M1
Copper Cu 140 138 8.41E+05% 1.689E-02
FPlatinum Pt 175 128 1.50E+09 1.06E-M1
Gold Au 166 144 5.81E+07 1.61E-02
Mercury  Hg 155 145 3 40E+08 1.00E+00
c=0.1 Radius in pm

Table 1, Resistivities of several materials compared with the resisting distances estimated using Equation (37). The
Resisting D column shows the resisting distance (m™) for different materials, which are calculated using Equation
(37), assuming a uniform value of ¢ = 0.1. The values of R, and R, for each material are obtained from the ptable
site. Specifically, the Valence Ra column used for R, corresponds to the covalent radius, and the Border Ra column


https://ptable.com/#Properties/Radius/VanDerWaals
https://ptable.com/#Properties/Radius/VanDerWaals

for R, is based on the Van de Waals radius or empirical radius for Ca, Fe, and Al. For simplicity, we did not include
the common factor of property Z in the calculation.

First, let's explore the effect of R, and R, on the resisting distance. Equation (37) allows us to estimate the resisting
distance for a conductor using its microscopic properties R, and R,, along with bond/attraction coefficient c. Unfortunately,
the values for ¢ are currently unavailable for most materials. To provide a rough range in this case, a uniform value of ¢ =
0.1 is used to estimate the resisting distances for several materials. By using the values of R, and R, obtained from the
ptable site, we calculated the corresponding resisting distances for these materials and compiled them in the Resisting D
column of Table 1.

The results exhibit a strong correlation between the electrical resistivity (column Resistivity) and the resisting distance
(column Resistive D), even using the uniform value of ¢ = 0.1. The results should be more accurate if actual values for ¢
are available for the evaluation. Notably, non-conductive materials such as silicon and diamond exhibit much higher
resisting distances than metals. Theoretically, the electrical resistance of any material can be computed using Equation
(35) as long as accurate values are available for the microscopic properties Z, R,, R,, and c. Nevertheless, these results
demonstrate preliminary evidence to support the validity of the resistance distance model.

Now, let's examine the significance of the attraction coefficient ¢ on resisting distance. The attraction coefficient
characterizes the bond strength for the attraction between molecules. According to Equation (37), if there is no bond
between molecules (i.e., ¢ = 0) or the bond strength is weak (e.g., ¢ < %), the resisting distance is always greater than zero,
as indicated by the blue curve in Figure 5. It suggests the absence of electron tunnels, or disconnected tunnels, which
could be the situation in insulators where bond strength is weak between certain molecules. Even though an electron may
be ejected from its host atom with high energy, there are no fully connected tunnels for it to smoothly flow along.

Resisting Distance at Different Coefficients

Resising Distance (1/m)

200 400 600 goo

Valence Electron Orbital Radius (pm)

Figure 5, Resisting distance d (m™) for different values of ¢, calculated using Equation (37) with molecules placed
2000 pm apart and a fixed R, = 1000 pm. The curves show that the resisting distance decreases as R, increases
towards R,. The orbital radius at zero resisting distance is where the curves intersect the x-axis, denoted by R,,
indicating the starting point of entering the electron tunnel. The width of the electron tunnel increases with c. When
¢ = 0, the resisting distance is always greater than zero, as indicated by the blue curve, suggesting that there is no



electron tunnel, which could be the case for insulators. A superconductor is a conductor with R, = R,, indicating that
the valence orbital overlaps the electron tunnel.

Electron tunnels will develop in substances with high attraction coefficients (e.g., ¢ > %4). As c¢ increases, the width of the
electron tunnels increases accordingly. For instance, when ¢ = Vs, there are small electron tunnels, as indicated by the red
curve. When ¢ = 1, the electron tunnels become wider, as shown by the yellow curve in Figure 5.

In normal conductors, electrons have to be energized into electron tunnels. The larger the gaps between valence orbitals
and electron tunnels, the more energy is required to elevate valence electrons to the electron tunnels, and the higher the
resistivity. This means that the resistivity of a conductor usually decreases with increasing c, as the gaps between electron
tunnels and valence orbitals are typically small with wider electron tunnels. When electron tunnels are wide enough to
overlap valence orbitals, valence electrons can enter and flow in the electron tunnels without lifting energy, eliminating
resistance and achieving superconductivity.

Now, let’s explore the condition of superconductivity. Because superconductors have no resistance, i.e., p = 0, with
Equation (37), the superconductivity condition can be expressed as

2¢c + cR, _ Bctl
_ 2

(38) —+

where R, denotes the conducting radius, which is the point where electron orbitals begin to overlap electron tunnels. In
Figure 5, this is also the point at which the resisting distance curve intersects the x-axis, or the resisting distance becomes
zero, i.e., D = 0. Thus, whenever R, = R,, superconductivity is achieved. By solving Equation (38) for R, at different values
of ¢, we found:

(39) R

Q

0.382Rb when c=1

Q

0.621Rb when ¢ =

Q

] SN P

0. 785Rb when ¢ =

The results imply that electrodrift or current may occur in an orbital well below the border. For instance, with ¢ = %, valence
orbitals will overlap electron tunnels when R, > 0.621R,, indicating the condition for superconductivity in this situation. The
reason that electrodrift can take place below the border is due to the pulling from adjacent molecules. This typically occurs
when the attraction between molecules is strong.

When ¢ = 1, a valence electron experiences an attraction from an adjacent molecule equivalent to the force it would
experience from its host molecule at the same distance. This scenario may occur when the adjacent molecule has an
electron hole, which can occur after an electrodrift. This implies that if a valence electron is situated next to a molecule with
an electron hole, it can drift to the next molecule without requiring additional lifting energy when the electron is at an orbital
above 0.382 of the distance to the border. In a typical bond between molecules, ¢ < 1. For example, when ¢ = ¥, the
electrodrift will occur at 0.785 of the border distance.



Therefore, the difference between insulators, conductors, and superconductors can be identified based on the solution to
Equation (38). For a given material with a specific value of ¢, if the equation has no real solution, the material is an
insulator. If real solutions exist, the material is either a conductor or a superconductor, depending on whether R, < R, or R,
= R.. Hence, the resisting distance model provides a quantitative mechanism to distinguish between them based on their
microscopic properties.

Note that c¢ represents the strength of a bond. Like molecular distance, bond strength is not fixed for a given substance but
is a dynamic parameter influenced by pressure and temperature. Thus, a ceramic can become a superconductor under
high pressure. This dynamic aspect will be explored next.

Dynamic Behavior of Electrical Resistivity

The resistivity of a conductor generally rises as temperature increases and falls as pressure increases. Conventional
superconductors usually manifest at low temperatures, while high-temperature superconductors are often achieved at
elevated pressures. These dynamic tendencies find explication within the framework of the tunnel theory we have
formulated thus far.

As shown in Equation (35), the electrical resistivity of a conductor is proportional to the resisting distance at the
microscopic scale. Therefore, the behavior of electrical resistivity is determined by the microscopic properties of ¢, R,, and
R,, which are encapsulated in the resisting distance. These microscopic properties are dynamically influenced by pressure
and temperature. Hence, insights into the dynamic behavior of electrical resistance can be gained by exploring the
response of ¢, R,, and R, to the changes in pressure and temperature bridged through the resisting distance model
expressed in Equation (24).

This dynamic behavior can be easily understood by analyzing the relationship between ¢, R,, R,, and R,. The width of
electron tunnels is determined primarily by the bond strength c. Therefore, for a given ¢, R, positively relates to R,. With a
fixed molecular distance, represented by R,, increasing the valence orbital radius, indicated by R,, will reduce the gaps
between R, and R, as well as between R, and R,, leading to a decrease in resisting distance and electrical resistivity, as
shown by the curves in Figure 5. On the other hand, with a fixed valence orbital radius, reducing molecular spacing will
also minimize the resistivity. The resistivity reduction in both cases is due to the decrease in R, - R,, representing the gaps
between electron tunnels and valence orbitals. With this principle in mind, it becomes easy to understand the dynamic
behavior of electrical resistivity related to the changes in pressure and temperature.

As pressure increases, the distance between molecules will be monotonically reduced, leading to a decrease in R,.
Without a change in the radius of valence orbitals (R,), reducing R, effectively diminishes the gaps between electron
tunnels R, and valence orbitals R, therefore minimizing D and eventually resistivity. This highlights the intricate relationship
between pressure and resistivity, which explains why resistivity decreases with increasing pressure and how many
superconductors are achieved under high pressures, even at very high temperatures and for some insulators.

The reduction of molecular spacing will also induce various intermolecular forces, such as the development of compression
bonds. This effect increases the attraction coefficient ¢. When c rises, the electron tunnel expands. The widening of



electron tunnels also reduces the gaps (R, - R,) between valence orbitals and electron tunnels and further diminishes the
resisting distance and ultimately the electrical resistivity.

Other microscopic properties, such as electron orbital radius r, or more significantly the valence orbital radius R,, are more
sensitive to changes in temperature. As temperature rises, valence electrons become more excited and move to higher
orbitals, causing R, to increase. When there is enough pressure to confine the space between molecules, increasing R, will
reduce the gap between R, and R,, and therefore diminish D and resistivity. This elucidates why high-temperature
superconductors can be obtained at high pressures.

However, as temperature increases in the absence of confining pressure, the increased repulsion of excited electrons
between adjacent molecules pushes them apart, leading to an increase in R,. Under normal pressure on Earth, which is
relatively constant and weak compared to the repulsion between molecules at high temperatures, R, typically rises faster
than R,, which in turn expands the gap between R, and R,. Consequently, D increases, as illustrated in Figure 6. This
explains why the resistivity of a conductor typically rises with temperature increases and conventional superconductors
achieved at low temperatures are usually destroyed at high temperatures.

When the temperature falls, electrons tend to retreat to lower orbitals, and repulsion between molecules weakens. The
normal pressure on Earth becomes more dominant, creating a compression effect equivalent to increasing pressure. As R,
decreases, R, is pushed lower faster than the reduction of R,, minimizing the gaps between R, and R, and eventually
causing valence orbitals to overlap electron tunnels. This explains the positive relationship between resistivity and
temperature, and conventional superconductors achieved at low temperatures. In other words, the effect of lowering
temperature is equivalent to increasing pressure.

e Bordering orbital
v~ Valence orbital

Base orbital

A, Low Temperature B, High Temperature

Figure 6, Transition of the electrical resistance phase. (A) Conventional superconductors are typically observed at
low temperatures, where molecules are so close that the valence electrons can enter the electron tunnel without
lifting energy, allowing electrodrift to occur freely. (B) As the temperature rises, molecules are pushed apart due to
the increasing molecular repulsion caused by excited electrons at higher orbitals. The conducting radius increases
faster than the valence orbital. Eventually, the valence orbital falls below the electron tunnel, destroying
superconductivity.



In summary, the distance between molecules is influenced by pressure and temperature. Pressure plays the primary role in
determining the molecular spacing, and temperature changes can create a similar effect to pressure. Molecular distances
determine the gaps between electron tunnels and valence orbitals and influence the induction of intermolecular bonds. The
bond strength also controls the width of electron tunnels, affecting the gaps between valence orbitals and electron tunnels.
These gaps correlate with resistivity in conductors, while there is no such gap in superconductors. The bond strength is
also the primary factor that distinguishes insulators from conductors. Therefore, the resistance state of matter is
dynamically determined by both pressure and temperature.

So far, the electron tunnel theory provides a unified framework for understanding the dynamic nature of insulators,
conductors, and superconductors. In the next few sections, let’'s apply this theory to explain the phenomena observed in
superconductors.

The Cause of the Meissner Effect

A superconductor is not just a perfect conductor but is more significant because of the Meissner effect, in which an
external magnetic field is expelled from the superconductor during the transition to the superconducting phase.”! It is
important to note that a magnetic field created by induction requires a change in magnetic flux based on Faraday's law of
induction.?*2" The Meissner effect is observed during the transition to the superconducting phase in the presence of an
existing magnetic field, where there is no change in magnetic flux.

In a normal conductor, there is no current because valence electrons are below electron tunnels. After the transition to the
superconducting phase, valence orbitals overlap electron tunnels. Valence electrons can enter the electron tunnels and
flow across molecules without lifting, resulting in resistance-free currents, i.e., superconductivity. The internal magnetic
fields induced by these random currents cancel each other locally. However, in the presence of an external magnetic field,
the directions of the currents are deflected by the Lorentz force:

(40) F =q(E +v X B)

where q represents the electrical charge, v is the velocity of the charge, B is the magnetic field, E is the electric field, and F
is the force exerted on the charge.?>?* When observing along the direction of the applied magnetic field, a moving electron
is deflected and circulates in a clockwise direction, resulting in a magnetic field. This field counteracts the applied magnetic
field inside the superconductor and reinforces the applied field outside. The net result appears as if the applied field were
expelled from the superconductor.

In both the Meissner effect and normal Faraday’s induction, the magnetic fields are generated by the flow of charges
deflected by the Lorentz force. Thus, the Meissner effect is also related to induction. The primary difference lies in the fact
that random currents naturally exist in superconductors due to valence electrons being present within electron tunnels. In
contrast, there is normally no current in conductors, and electrons must be raised to electron tunnels to create currents.
During a normal Faraday’s induction, electrons are elevated by a change in the magnetic flux. However, due to the
resistance in conductors, the inducted currents are not sustainable. Induction also varies in superconductors when the



external field changes. Since resistance is zero in superconductors, the induced currents can fluctuate to compensate for
the external field, up to a certain extent limited by the critical current density discussed next.

The Limit in Critical Current Density

The critical current density refers to the maximum current density that a superconductor can tolerate. According to Stefan
Boltzmann's law, the radiation power P emitted by a blackbody is directly proportional to the fourth power of its absolute
temperature T:

@1) P =pl"

where p is the Stefan-Boltzmann constant. This law can also be derived by integrating Planck’s law over the frequency and
then over the solid angle. At equilibrium, the rate of energy absorption of a body is equal to the emission."" Therefore, the
body also absorbs energy from surroundings at a rate proportional to the fourth power of the temperature. The current
density in a body, such as in a superconductor, corresponds to the density of electrodrifts. Each electrodrift starts from an
electron excitation as a result of energy absorption. The electron’s energy of superconductors is absorbed from the
environment given by Equation (13). Consequently, the electrodrift/current density should be also proportional to the fourth
power of its temperature. By introducing a conversion efficiency C, the current density can be expressed as

@2) J=cr'

where C is a property specific to a superconductor. This equation indicates that the maximum current density of a
superconductor is proportional to and limited by the fourth power of the temperature, meaning that the critical temperature
determines the critical current density of the superconductor. This explains why conventional low-temperature
superconductors typically have lower critical current densities when compared with high-temperature superconductors.

Critical Magnetic Field Limited by Critical Current Density

When subjected to an external magnetic field, a superconductor will lose its superconductivity once the applied field
exceeds a certain intensity, known as the critical magnetic field. At low intensities, an external magnetic field is expelled
from a superconductor in the Meissner effect. As the intensity of the external field rises, the internal field increases
accordingly to counteract the applied field.

The internal field of a superconductor arises from counter-currents inside the superconductor, and the field intensity
correlates to the density of the counter-currents. As suggested in the last section, there is a limit to the maximum current
density in a superconductor at a specific temperature. Beyond the critical current density, the external field is no longer fully
canceled inside the superconductor, and the applied field cannot be entirely expelled in the Meissner effect.

Once the critical current is exceeded, the moving charges, including the orbital electrons, are deflected by the Lorentz
force in the remaining external field. The orientation of electron orbitals surrounding each atom is deformed in a way that



the electron clouds are compressed along the direction of the applied field or flattened perpendicular to the direction of the
applied field, as illustrated in Figure 7B. Valence electrons play a significant role in superconductivity and are affected the
most due to less tangling effect from other electrons in the host atom. When the applied field is over the critical field, the
valence electrons will withdraw from the electron tunnels, destroying the superconductivity.

A, Normal Electron Cloud B, Deformed in Magnetic Field

Figure 7, Superconductivity destroyed in a magnetic field over a critical intensity. (A) In a weak or absence of an
external magnetic field, the applied field can be completely canceled by the internal field in a superconductor due to
the Meissner effect. The electron clouds of valence electrons extend normally into electron tunnels.
Superconductivity may withstand a magnetic field up to a critical intensity. (B) However, an external field over the
critical intensity cannot be completely offset due to the limit of critical current density. Orbital electrons are deflected
by the Lorentz force in the remaining field and divert their orbiting plane in the direction perpendicular to the
external field. This action compresses the electron clouds like squashed lanterns. The deformation of orbitals
causes the valence electrons to withdraw from the electron tunnels, destroying superconductivity.

Therefore, the failure of superconductivity above the critical magnetic field is due to the limit of critical current density. As
predicted by Equation (42), a higher temperature corresponds to a higher critical current density. Higher critical current
density, in turn, sustains a higher critical magnetic field. This explains the strong correlation observed between critical
temperatures and critical magnetic fields.

Molecular Structure Determining Type-ll Superconductor

A type-ll superconductor exhibits at least two critical fields: B,; and B_,.?>?"! Normal superconductivity is observable in an
applied magnetic field below B,,. The superconductivity is destroyed at a field intensity over B,,. Between the two fields,
the superconductivity is partially destroyed in certain regions of the superconductor. These non-superconductive islands
are known as magnetic vortices. The density of the vortex increases as the intensity of the applied magnetic field rises.
Type-ll superconductors are usually made of alloys or compounds.

Figure 8 illustrates the crystal structure of a type-Il superconductor composed of two distinct types of molecules. Normal
superconductivity is observable in a magnetic field B < B,,, as shown in Figure 8A. This occurs because the applied field is



below the critical fields for all molecules, and every molecule is superconducting. Superconductivity is destroyed in a field
B > B,,, as illustrated in Figure 8C. B, represents the maximum critical field for all materials in the superconductor, and
when the field exceeds B,,, superconductivity is destroyed for every type of material.
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Figure 8, Responses of a type-ll superconductor to different intensities of external magnetic fields. (A) In a
magnetic field below the minimum critical intensity, electron tunnels between all molecules are fully connected, and
superconductivity is maintained entirely. (B) In a field between the minimum and maximum critical intensities, some
valence orbitals separate from the electron tunnels, such as the small molecule at the center, resulting in vortices or
superconducting holes in the mixed state around the small molecules. (C) Under a field above the maximum critical
intensity, the superconductivity is destroyed as all the valence orbitals withdraw from the electron tunnels.
Additionally, note that the deformation of the electron clouds is affected by the direction of the applied field, which
explains why the critical fields of a type-Il superconductor may vary depending on the direction of the external field.

In a field between B, and B,,, as depicted in Figure 8B, the superconductivity for the central molecule is destroyed while
other molecules surrounding it remain superconductive. The center part becomes a non-superconductive island,
corresponding to the magnetic vortex which allows the magnetic flux to penetrate for flux pinning effect.

The crystal structure of type-ll superconductors typically has different arrangements of molecules in various directions,
especially with compounds. Magnetic fields applied in various directions may cause diverse deflection/flattening effects on
the electron clouds. Consequently, superconductivity may be destroyed at different field intensities depending on the
direction of the applied field. This effect is also illustrated in Figure 8. Two critical magnetic fields are observed with an
external field applied at a small angle. Different critical fields may be observed with a field applied from another direction.
As the geometry of the deformed electron clouds changes with the direction of the applied field, the valence electrons may
withdraw from the electron tunnels at different field intensities in various directions. For instance, the superconductivity of
YBCO can withstand an external magnetic field of up to 250 T when aligned parallel to the CuO, planes, or the a-b plane
of YBCO crystals.?® However, the superconductivity is destroyed by an external field of 120 T when aligned perpendicular
to the CuO, planes, or along the c-axis direction of the crystals.

The destruction of superconductivity is caused by the withdrawal of valence orbitals from electron tunnels under the
influence of a magnetic field. This effect can be related to specific bonds and may vary depending on the field's direction.
Type-ll superconductors are typically composed of alloys or compounds, where each type of molecule can form one or



more bonds with adjacent molecules in various directions. Consequently, the more complex the molecular structures in a
superconductor, the greater the variations in the critical destruction fields.

The molecular structure of compounds is often asymmetrical due to various bonds in different directions. Consequently, the
structure of electron tunnels also varies with direction, resulting in different critical fields in various orientations. The two
critical fields frequently mentioned in the literature likely represent the minimum and maximum of all the critical magnetic
fields present in a type-ll superconductor. In the mixed state, vortices form in regions where superconductivity is partially
destroyed. As the intensity of the applied magnetic field increases and various critical fields are successively exceeded, the
vortex density increases.

Correlation between Superconductor, Density, and State of Matter

According to the proposed theory, superconductivity arises from the overlap between valence orbitals and electron tunnels,
which is associated with smaller molecular spacing and, consequently, higher density. Thus, the theory predicts that
superconductivity is more likely to be found in high-density elements. This prediction aligns well with the superconductive
elements found in the periodic table. Figure 9 highlights known superconductive elements in blue boxes, which correspond
well with the high-density elements shown in Figure 10.

H Atomic symbol He
Critical point, Te (K)
Y . Superconductor B c N 0O F Ne

Na Mg S Cl Ar
K Ca Sc Ni Cu Se Br Kr
Rb Sr Y Pd Ag Te | Xe
Cs Ba Pt Au Po At Rn
Fr Ra Ds Rg Lv Ts Og

Eu Gd Tb Dy Ho Er Tm ¥Yb Lu

. Cm Bk Cf Es Fm Md No Lr

Figure 9, Known superconductive elements (T, from Peter J. Lee’s page).
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Figure 10, The densities of elements (screenshots from ptable site).

1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16 17 18

s« 3500 Kelvin
Liquid o . > B |
Hols 3227°Celsius Nob

Gas : i 14.007 15.899

5840°Fahrenheit W% ot S

iyl 23 24 25 26 28 29 i 33 34
Sc Ti \'] Cr Mn Fe Ni Cu

Icum Scandium Trtsmurn “anadum | Chromiim - Manganesa Iron balt  |Nickel Copper Arsani ium
44.956 567 50.942 51996 54938 55.845 . 58.603 |63.546 3 69.723 |72 74922 78971

35000

41 42 43 44 4 51 52
Zr Nb Mo Te Ru Sb Te
Zirconium |Niobium | Moybdenur | Tednetium [Ruthenium |Rh Palladium Silver i i Tin Antimony | Tellurium
91.224 92906 |95.95 (98) 101.07 102 91 10642 107.87 ! . 5 121 76 12780 1
74 75 76 77 78 79 82 84
W Re ©Os |r Pt Au g Pb BI Po

Hafnium |Tantslum Tungsten Rhenium Osmium |lidium | Platinum Gold i sad Bismuth Polonium Aststing
178.49 |180.95 [183.84 |186.21 190.23 19222 |196.08  196.97 . 204.38  207.2 208.98  |(209)

106 107 108 108 110 "1 114 115 116
Bh Hs Mt Rg Cn Nh FlI Mc Lv
jium Bohrium Hassium Meinedum Damstadiu Roenigenis Nihonium Flerovium Mosoovium Livermorium
(260)  (270)  (270) (278)  (281)  (282) (286)  (289) (200)  (293)

Faor elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Periodic Table Design & Interface Copyn’ght © 1997 Michael Dayah. Ptable.com Last updated Jun 16, 2017
59 66 67 68 ] 70 71
Pr Nd Pm Sm Eu Gd Th D Ho Er Tm Yb |Lu
Lanthanum Cerium | Prassodymi Promethium Samarium | Europium | Gadoinium | Terbium aum Holmium Erbium  Thulium Yiterbium Lutetium
138.91  [140.12 14091 |144.24 (145) 15036 151. 157.26 |158.93 1 2.50 164 83 157.26 168.93 |173.056 |174.97

89 20 a1 95 96 a7 101 102 103
PaUNpPuAm_CljanCfEsFdeNoLr

Protacinium Uranium  Nepunium | Plutonium Amerdum  Curium  Berkelium Caliomium Mendelesir Nobelium Lawencim
(227) 232.04 231.04 23803 (237) (24-4-) (243) (247) (247) (251) (252) (25?) (258) (258) (266)

Actinium  Thorium

Figure 11, The states of elements at 3500 K (screenshots from ptable site).
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Highly repulsive molecules are likely to push each other apart, resulting in larger molecular distances and a greater
tendency to become gaseous. In contrast, smaller molecular spacing is typically associated with less repulsion between
molecules, leading to lower volatility and higher melting and boiling points. Therefore, the theory also predicts that
superconductive elements correlate with elements having high boiling points, a prediction also supported by observations.
Figure 11 highlights elements that remain in the solid or liquid phase at 3500 K, which corresponds well with the
superconductive elements shown in Figure 9.

Electrodrift Explanation of Flux Quantization

Magnetic flux measures the total magnetic field passing through a given area. A looping current generates magnetic flux,
and the smallest unit of flux is created by a single electron circulating an area, making magnetic flux quantized. The value
of the flux quantum @, can be determined by applying gauge transformations to the Schrodinger equation. Although the
phase of the wave function depends on the gauge, the physical predictions do not, allowing us to conclude that the value
of @, is a gauge-invariant quantity:

(43) @, =—4

where both h and e are fundamental physical constants for the Planck constant and the charge of an electron, respectively.
This prediction may be validated using a superconductor in a donut shape.

Based on the proposed theory, currents or electrodrifts in a superconductor originate from electron orbital transitions. An
electron jump simultaneously creates an excited electron and an electron hole behind it. The drifting of these charges
results in a flow of negative charge and another of positive charge. The minimum flux is produced by the two flows moving
in opposite directions around a donut-shaped superconductor, which is equivalent to two electrons traveling in the same
direction around the donut. Consequently, the theory predicts the minimum flux in a donut-shaped superconductor to be
twice the flux quantum @,. This prediction is confirmed experimentally by B. S. Deaver and W. M. Fairbank,*® and
independently by R. Doll and M. Nabauer.F*°

Prediction of Electrical Resistance State of Matter

As discussed previously, the dynamic behavior of electrical resistivity is influenced by pressure and temperature. This
implies that materials can transition between insulating, conducting, and superconducting phases. For instance, insulators
can become superconductors under sufficient pressure, as observed in many high-temperature superconductors. Mercury,
which is a conductor at normal temperatures, transitions to a superconductor at low temperatures. Just as the state of
matter can transition from solid to fluid, the proposed theory predicts that the electrical state of matter can also transition
between insulating, conducting, and superconducting at different pressures and temperatures.

The electrical phase transition of matter is related to the presence and connectivity of electron tunnels between molecules.
The characteristics of electron tunnels are determined by the attraction/bond coefficient between molecules, which is
determined by pressure and temperature. Therefore, electrical phase transitions result from changes in pressure and



temperature and can be represented in a phase diagram with transition boundaries, similar to phase diagrams for states of
matter.

Pressure influences electrical phase transitions through two key factors: molecular spacing and bond strength. Increasing
pressure reduces the distance between molecules, inducing bonds between them. This reduction in molecular spacing
decreases the gaps between electron tunnels and valence orbitals, thereby minimizing resistivity and potentially achieving
superconductivity. At closer distances, electron clouds are influenced by adjacent molecules, causing them to redistribute
and form new bonds.

As illustrated in Figure 12, the width of electron tunnels increases with rising bond strength, represented by the attraction
coefficient, which typically reduces the gaps between electron tunnels and valence orbitals. Both of these effects facilitate
the transition of the electrical phase from insulating to conducting and/or superconducting. Additionally, as discussed
earlier, decreasing temperature has an equivalent effect to increasing pressure by causing compression. Therefore, the
electrical resistance state of matter can transition from one phase to another in response to changes in pressure and/or
temperature.

Conduction Zone - Attraction Coefficient

Energy Level (V)

oo 400 200 200 1000
Electron Orbital Radius (pm)

Figure 12, Relationship between electron tunnel width and intermolecular bond strength influenced by the attraction
coefficient ¢ using a model of two molecules 2000 pm apart. Each curve indicates the energy level of an electron as
a function of the electron orbital radius for a specific attraction coefficient, calculated using Equation (23) with a
fixed R, of 1000 pm. The x-axis starts at a molecule center and extends toward the adjacent molecule to the right.
The figure plots only a section on the left half of the two molecules. The electron energy level rises as the orbital
radius increases from the molecule center to the border. When ¢ = 1, the energy level elevates from negative
values, turning positive at a radius of 382 pm, as illustrated by the yellow curve. A positive energy level indicates
the electron is no longer confined by its host nucleus and can flow between the molecules. Thus, the region of the
positive energy level represents the electron tunnel. Note that with ¢ = 1, the curve simulates the attraction from the
next molecule with an electron hole, creating the widest electron tunnel. When ¢ = V3, the energy level turns positive
at a radius of 785 pm, resulting in a narrower electron tunnel, as shown by the red curve. When ¢ =0, the energy
level remains entirely negative, indicating no electron tunnel, as illustrated by the blue curve.



For a conventional superconductor, the critical point typically refers to the transition temperature observed at normal
pressure on Earth. However, multiple critical temperatures may be observed at different pressures for the same material.
Each critical temperature represents a point on the superconducting transition boundary at a specific pressure. Collectively,
these critical points depict the superconducting transition boundary in a phase diagram, as illustrated by the blue curve in
Figure 13.
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Figure 13, Electrical resistance phase diagram depicting superconducting, conducting, and insulating transition
boundaries, along with the transition boundaries of conventional shearing resistance states. The transition
boundary for superconductivity is the curve connecting all the tuples of critical temperatures and pressures of the
superconductor. For most substances, this boundary typically resides on the high-pressure and low-temperature
side of room conditions, which explains why room-temperature superconductors are less common due to
unfavorable conditions on Earth. The overlap between insulating and superconducting transition boundaries
indicates there is a direct transition from insulators to superconductors.

The transition boundary can also be theoretically determined using the resisting distance model. Equation (35) can be
interpreted as a 3D surface representing resistivity over the domains of pressure and temperature. The transition boundary
appears as a curve on the pressure-temperature plane where the surface intersects the plane at zero resistivity, as
described in Equation (38), i.e., at p = 0. The solution to Equation (38) can be expressed in the form of

(44) R =f(c R)

where each term of Ry(t,p), Ry(t,p), and c(t,p) is a function of temperature t and pressure p. Equation (38) does not always
have a real solution. This likely occurs when the intermolecular attraction is weak, e.g., ¢ <%, which corresponds to the
insulating phase. However, when it does have a real solution for a given ¢, all the points of (f,p) on the solution (44) define
the transition boundary between the conducting and superconducting phases. Any point (t,p) with R,(t,p) > R.(t,p) must be
on the superconducting side, while points with R,(t,p) < R.(t,p) are on the conducting side. For instance, a real solution to
Equation (38) atc =1 is:

3—/5
45) R =LR



= 0. 382Rb

In this case, the material will exhibit superconductivity whenever the condition of pressure and temperature extends the
valence orbital to a radius of 0.382 or greater of the distance to the border. Otherwise, it will behave as a conductor.

Since the decrease in temperature has an effect equivalent to the increase in pressure, the transition boundary should
generally trend from low pressure and temperature toward high pressure and temperature, as illustrated by the blue curve
in Figure 13. This determines why high-temperature superconductors are typically obtained under high pressures.

For conductors, the difference between R.(t,p) and R, (tp) represents the gap between electron tunnels and valence
orbitals, which is proportional to electrical resistivity. A large difference between R,(t,p) and R,(t,p) indicates more energy is
required to raise the valence electrons to the electron tunnels, therefore higher resistivity.

The electron tunnels in an insulator cannot connect into a continuous network when the bonds between certain molecules
are so weak that the attraction coefficient is less than 0.225. Therefore, all the points (t,p) on the temperature-pressure
plane where c(t,p) = 0.225 define the insulating boundary, as illustrated by the purple curve in Figure 13. This boundary
should be to the high-temperature side of the superconducting boundary. There may be overlaps between superconducting
and insulating boundaries. If there is an overlap, the overlap is the portion of the transition boundary from insulating to
superconducting directly. A triple transition point may also exist in an electrical resistance phase diagram, as illustrated in
Figure 13 at the point when the purple curve intersects with the blue curve.

The prediction of electrical phase transition is supported by the observed behavior of conductors and superconductors in
response to changes in pressure and temperatures. For instance, the critical temperature of H,S superconductors
increases with pressure, ranging from 23 K at 100 GPa to 150 K at 200 GPa.’" The transition boundaries of many
materials can be measured or validated in most high-pressure laboratories, given the right equipment and expertise.

Despite being predicted to be an ordinary state of matter, superconductors are not as common as conductors on Earth
because the standard conditions of pressures and temperatures on Earth are not favorable for superconductivity. However,
Superconductivity is theoretically expected to be more common under high pressures. So, superconductors should prevail
inside large planets, which might be responsible for the origin of the planet’'s magnetic fields. This may explain why the
planet's magnetic fields are popular in large planets. As a consequence, a hypothesis has been proposed that the
geomagnetic field originated from superconductors inside Earth.k?

Synthesizing Room-Temperature Superconductors

The elegance of the proposed theory lies in its ability to provide a unified framework for understanding insulators,
conductors, and superconductors, and more importantly, in offering practical guidelines for synthesizing superconductors.
By comprehending the microscopic basis of superconductivity, the synthesis of room-temperature superconductors is no
longer a random endeavor but becomes a deliberate engineering task. For practical applications, it is essential for
superconductors to function under normal Earth conditions. The main challenge in achieving superconductivity is the
repulsion between molecules, which intensifies as the temperature rises, especially for symmetrical molecules. The key



strategy in synthesizing superconductors is to compress the spacing between molecules. Pressure not only reduces
molecular distances but also promotes bonding between molecules, both of which are critical for achieving
superconductivity. The following principles can significantly narrow the search for room-temperature superconductors:

e The engineering strategy should leverage molecular attractions to counteract repulsions between molecules instead of
replying to external pressures. By designing the molecule structures to induce attractive forces between specific atoms,
it should be feasible to bring together certain atoms into proximity, facilitating their valence orbitals to extend into the
electron tunnels and therefore achieving superconductivity.

e Electronegativity!®! plays a significant role in the choice of elements for synthesizing superconductors. It is important to
avoid elements with extremely high electronegativity, as they would strongly retain electrons, hindering the flow of
electrons across molecules. Conversely, elements with too weak electronegativity may be insufficient to establish the
necessary intermolecular attractions needed to develop wider electron tunnels. It is advantageous to choose elements
in a narrow range of electronegativities. By maintaining a close range of electronegativities among the selected
elements, it becomes possible to strike a balance that promotes the formation of interconnected electron tunnels.

e The connectivity of electron tunnels is also critical for superconductivity. Excessively complex and large compounds
have the potential to disrupt the continuity of electron tunnels. Connected electron tunnels should be at the same
potential/energy level. In a crystal made of complex molecules, the field intensities between different regions are likely
uneven, as in most insulators, which may disrupt the continuity of electron tunnels.

e The molecular structure of compounds or alloys that incorporate a combination of large and small atoms gives rise to
uneven intermolecular tensions, thereby increasing the likelihood of fostering compressions between certain atoms and
the development of electron tunnels. A smaller atom may pull in nearby atoms, introducing compression between
certain atoms that can facilitate the development of wider electron tunnels to overlap valence orbitals.

Summary

The challenges encountered by conventional theories when attempting to account for the phenomena of resistivity and
superconductivity under high pressures prompt us to realize the flawed presumptions at a deeper foundational level. These
misapprehensions might be a contributing factor to the prolonged inability to fully comprehend the mechanisms of
superconductivity and to search or synthesize room-temperature superconductors. By departing from these fallacies, an
avenue opens to formulate an alternative theory.

The proposed theory provides insight into resistivity and superconductivity at the microscopic scale while offering a
comprehensive explanation of the properties and phenomena of conductors and superconductors. Its prediction of
electrical resistance states of matter provides a unifying framework that connects different electrical states through the
concept of electron tunnels predicted in the models. Superconductivity is an ordinary state of matter in this framework,
although it is not commonly observed in normal conditions on Earth.

The significance of this theory lies in its provision of practical guidelines for engineering room-temperature
superconductors. Most superconductors to date have been obtained under extreme conditions, such as low temperatures
or high pressures, which are impractical for many applications. To achieve room-temperature superconductivity, we need to
take a different approach. This involves designing molecular structures that can harness molecular attraction to overcome
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the repulsion and bring molecules closer. This strategy would eliminate the need for external pressure and make it possible
to achieve superconductivity under ordinary conditions on Earth.
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