Modules

It’s about time to add support for modules: our last compiler is almost 2000 lines of code.

Party

Continuing our RPG analogy, we liken modules to parties of heroes. Even in single-player games, we often direct a group of specialists rather than one powerful multi-talented being. Perhaps we enjoy observing teamwork, or following gaming traditions.

But perhaps we also like parties for the same reasons we decompose a large problem into digestible subproblems. For example, we might only need to think about the intricacies of magic spells when controlling the wizard character.

As usual, our first stab has limitations. This party is just getting started.

  • To avoid dealing with files, our compiler reads the concatenation of all the modules on standard input.

  • To keep parser changes minimal, all symbols are exported, and all module imports are unqualified.

  • Fixity declarations must precede all occurrences of their corresponding operators in the standard input.

  • At most one module should declare FFI imports.

  • Cyclic module dependencies cause an infinite loop.

On the other hand, we proudly support import statements anywhere in the file, and multiple modules in the same file.

In fact, this is why fixity declarations must appear first in the input. GHC insists on one module per file with imports appearing before other declarations, hence its parser can process imports before reaching any expressions and determine the fixity of any operators that appear when it later reaches them. With our scheme, we may encounter an operator in an expression before learning its fixity, which confuses our simple parser. In a later compiler we’ll address this issue.

We tweak the parser to support module and import, and add a new field to Neat that hold the imports of a module. A module with no explicit module declaration is taken to be the Main module. Concatenation implies such a module would have to appear first.

We add a new Link field to the Extra data type, which holds the module, symbol, and type of a top-level variable defined in another module. During inference, we replace a V field with a Link field if we find it is exported from one of the imported modules.

We introduce a one-off Dep monad because we lack monad transformers, and would like a combination of the Either and State monads when finding the dependencies of a definition.

Up until now, all symbols were global across a single file. As we Scott-encoded ADTs and generated types and selector functions for typeclass methods, we simply threw them on a big pile in a Neat value being passed around. Modules force us to be more careful.

We invent a special module "#" preloaded with built-in definitions required by the Haskell syntax we support:

  • The unit type and value () is part of the language.

  • If expressions and guards require Bool, True, and False.

  • Pairs are part of the language, even though suitably defined ADTs could be used instead (the IOCCC edition of our compiler does this to save room). Curiously, Haskell has no built-in type for the dual of pairs; requiring the programmer to define Either.

  • Lists are famously built into Haskell.

  • String literals require lists.

  • We compile recursive let definitions with fix.

  • Operations involving native integer types: chr ord intAdd intMul and so on.

  • Primitives for IO monad methods.

  • The RTS reduces fail# on failed case matches.

Each module implicitly imports this special "#" module, so these built-in primitives are accessible to all.

This is a good time to mention that rewriting means:

  • Ranges become expressions involving enumFromTo and enumFrom.

  • Failed pattern matches are undefined.

  • We need pure (for pure ()) and >>= to support do notation.

  • Patterns containing integer and character literals require (==).

  • List comprehensions are expressed in terms of concatMap and pure.

None of these are built-in; they must be explicitly defined at the top level if these language features are used. The last of these implies we must define an Applicative instance for lists. To remove these gotchas, we could define low-level primitives as we do for the others.

Code generation now has two phases. The first corresponds to GHC incrementally compiling a module: it resolves all locally defined symbols, and leaves Link values indicating where to put addresses of symbols defined elsewhere. The generated code is not position-independent; rather, for each module, we are given the current heap pointer, and return an updated heap pointer.

The second phase replaces all Link values with heap addresses, as all entities are in the heap by this point.

Modules make us regret older expedient decisions regarding typeclasses. We threw default method definitions in one data structure, and lumped together method type signatures and instances in another. But now we might find a typeclass definition in one module, and an instance of it in another, so our code that searches imports for this information is messy. For example, the fillSigs helper raids other modules for the types of methods.

We had previously substituted the syntax trees for default method implementations straight into instances. If we one day want incremental compilation, then it is likely easier to compile a default implementation once, then access it from other modules via a layer of indirection. With this in mind, for each method foo, we generate a method called {default}foo whose body is the default method implementation of foo if given, and fail# otherwise.

Since we toss dictionary selector functions on to a big pile of ordinary definitions, to find the type of a method we add typeOfMethod, whose logic is similar to findImportSym, but differs enough that we implement it independently.

We modify the code to insert dictionaries one strongly-connected-component at a time rather than one function at a time. This is required to correctly compile mutually recursive functions that use typeclasses. Each function of the component may wind up calling any other, so it needs all the relevant dictionaries.

Up until now we had preserved topological order of the top-level definitions as they made their way through our compiler. We change the code generator so it no longer needs this precondition, so that we can store compiled functions and modules in maps rather than delicately manicured lists.

We introduce a single combinator to act as BK which frequently occurs due to Scott encoding.

If B K x y z = x y is reduced individually, our virtual machine allocates a new app-cell for K (x y), only to immediately rewrite it as I (x y), which again must be reduced to yield x y at last. The BK combinator avoids this needless song and dance.

A dedicated BK combinator is also aesthetically pleasing. Consider some three-argument combinator given x y z. We can leave x alone or apply it to z, and similarly for y, and then apply the first thing to the second:

(x  )(y  )
(x  )(y z)
(x z)(y  )
(x z)(y z)

The last 3 are the B C S combinators. The first one is BK. Smullyan appears not to have assigned a bird to this combinator, so we resort to the clunky name BK throughout our code.

The BK combinator makes it easy for optim to rewrite B BK V as CONS.

We add the LEFT combinator, which is equivalent to B BK T and also arises frequently in Scott encodings; indeed, the data constructor Left compiles to LEFT. We add the KI combinator to shave off a few more reductions.

-- Modules.
infixr 9 !
infixr 9 .
infixl 7 * , `div` , `mod`
infixl 6 + , -
infixr 5 ++
infixl 4 <*> , <$> , <* , *>
infix 4 == , /= , <=
infixl 3 && , <|>
infixl 2 ||
infixl 1 >> , >>=
infixr 0 $

foreign import ccall "putchar_shim" putChar :: Char -> IO ()
foreign import ccall "getchar_shim" getChar :: IO Char
foreign import ccall "eof_shim" isEOFInt :: IO Int
foreign import ccall "getargcount" getArgCount :: IO Int
foreign import ccall "getargchar" getArgChar :: Int -> Int -> IO Char

libc = [r|#include<stdio.h>
static int env_argc;
int getargcount() { return env_argc; }
static char **env_argv;
int getargchar(int n, int k) { return env_argv[n][k]; }
static int nextCh, isAhead;
int eof_shim() {
  if (!isAhead) {
    isAhead = 1;
    nextCh = getchar();
  }
  return nextCh == -1;
}
void exit(int);
void putchar_shim(int c) { putchar(c); }
int getchar_shim() {
  if (!isAhead) nextCh = getchar();
  if (nextCh == -1) exit(1);
  isAhead = 0;
  return nextCh;
}
void errchar(int c) { fputc(c, stderr); }
void errexit() { fputc('\n', stderr); }
|]

class Functor f where fmap :: (a -> b) -> f a -> f b
class Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
(<$>) = fmap
liftA2 f x y = f <$> x <*> y
(>>) f g = f >>= \_ -> g
class Eq a where (==) :: a -> a -> Bool
instance Eq Int where (==) = intEq
instance Eq Char where (==) = charEq
($) f x = f x
id x = x
const x y = x
flip f x y = f y x
(&) x f = f x
class Ord a where
  (<=) :: a -> a -> Bool
  x <= y = case compare x y of
    LT -> True
    EQ -> True
    GT -> False
  compare :: a -> a -> Ordering
  compare x y = if x <= y then if y <= x then EQ else LT else GT
instance Ord Int where (<=) = intLE
instance Ord Char where (<=) = charLE
data Ordering = LT | GT | EQ
instance Ord a => Ord [a] where
  xs <= ys = case xs of
    [] -> True
    x:xt -> case ys of
      [] -> False
      y:yt -> if x <= y then if y <= x then xt <= yt else True else False
  compare xs ys = case xs of
    [] -> case ys of
      [] -> EQ
      _ -> LT
    x:xt -> case ys of
      [] -> GT
      y:yt -> if x <= y then if y <= x then compare xt yt else LT else GT
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
fst (x, y) = x
snd (x, y) = y
uncurry f (x, y) = f x y
first f (x, y) = (f x, y)
second f (x, y) = (x, f y)
not a = if a then False else True
x /= y = not $ x == y
(.) f g x = f (g x)
(||) f g = if f then True else g
(&&) f g = if f then g else False
instance Eq a => Eq [a] where
  xs == ys = case xs of
    [] -> case ys of
      [] -> True
      _ -> False
    x:xt -> case ys of
      [] -> False
      y:yt -> x == y && xt == yt
take 0 xs = []
take _ [] = []
take n (h:t) = h : take (n - 1) t
maybe n j m = case m of Nothing -> n; Just x -> j x
instance Functor Maybe where fmap f = maybe Nothing (Just . f)
instance Applicative Maybe where pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf
instance Monad Maybe where return = Just ; mf >>= mg = maybe Nothing mg mf
instance Alternative Maybe where empty = Nothing ; x <|> y = maybe y Just x
foldr c n = \case [] -> n; h:t -> c h $ foldr c n t
length = foldr (\_ n -> n + 1) 0
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure [])
mapM_ f = foldr ((>>) . f) (pure ())
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0
instance Applicative IO where pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y)
instance Monad IO where return = ioPure ; (>>=) = ioBind
instance Functor IO where fmap f x = ioPure f <*> x
class Show a where
  showsPrec :: Int -> a -> String -> String
  showsPrec _ x = (show x++)
  show :: a -> String
  show x = shows x ""
  showList :: [a] -> String -> String
  showList = showList__ shows
shows = showsPrec 0
showList__ _     []     s = "[]" ++ s
showList__ showx (x:xs) s = '[' : showx x (showl xs)
  where
    showl []     = ']' : s
    showl (y:ys) = ',' : showx y (showl ys)
showInt__ n
  | 0 == n = id
  | True = showInt__ (n`div`10) . (chr (48+n`mod`10):)
instance Show () where show () = "()"
instance Show Bool where
  show True = "True"
  show False = "False"
instance Show a => Show [a] where showsPrec _ = showList
instance Show Int where
  showsPrec _ n
    | 0 == n = ('0':)
    | 1 <= n = showInt__ n
    | 2 * n == 0 = ("-2147483648"++)
    | True = ('-':) . showInt__ (0 - n)
showLitChar__ '\n' = ("\\n"++)
showLitChar__ '\\' = ("\\\\"++)
showLitChar__ c = (c:)
instance Show Char where
  showsPrec _ '\'' = ("'\\''"++)
  showsPrec _ c = ('\'':) . showLitChar__ c . ('\'':)
  showList s = ('"':) . foldr (.) id (map go s) . ('"':) where
    go '"' = ("\\\""++)
    go c = showLitChar__ c
instance (Show a, Show b) => Show (a, b) where
  showsPrec _ (a, b) = showParen True $ shows a . (',':) . shows b
isEOF = (0 /=) <$> isEOFInt
putStr = mapM_ putChar
putStrLn = (>> putChar '\n') . putStr
print = putStrLn . show
getContents = isEOF >>= \b -> if b then pure [] else getChar >>= \c -> (c:) <$> getContents
interact f = getContents >>= putStr . f
getArgs = getArgCount >>= \n -> mapM (go 0) [1..n-1] where
  go k n = getArgChar n k >>= \c -> if ord c == 0 then pure [] else (c:) <$> go (k + 1) n
error s = unsafePerformIO $ putStr s >> putChar '\n' >> exitSuccess
undefined = error "undefined"
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a
foldl1 f (h:t) = foldl f h t
elem k xs = foldr (\x t -> x == k || t) False xs
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs
(++) = flip (foldr (:))
concat = foldr (++) []
map = flip (foldr . ((:) .)) []
head (h:_) = h
tail (_:t) = t
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13, 160]
instance Functor [] where fmap = map
instance Applicative [] where pure = (:[]); f <*> x = concatMap (<$> x) f
instance Monad [] where return = (:[]); (>>=) = flip concatMap
concatMap = (concat .) . map
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing
filter f = foldr (\x xs -> if f x then x:xs else xs) []
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys
intersect xs ys = filter (\x -> maybe False (\_ -> True) $ find (x ==) ys) xs
last (x:xt) = go x xt where go x xt = case xt of [] -> x; y:yt -> go y yt
init (x:xt) = case xt of [] -> []; _ -> x : init xt
intercalate sep = \case [] -> []; x:xt -> x ++ concatMap (sep ++) xt
intersperse sep = \case [] -> []; x:xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt)
all f = foldr (&&) True . map f
any f = foldr (||) False . map f
and = foldr (&&) True
or = foldr (||) False
zipWith f xs ys = case xs of [] -> []; x:xt -> case ys of [] -> []; y:yt -> f x y : zipWith f xt yt
zip = zipWith (,)
data State s a = State (s -> (a, s))
runState (State f) = f
instance Functor (State s) where fmap f = \(State h) -> State (first f . h)
instance Applicative (State s) where
  pure a = State (a,)
  (State f) <*> (State x) = State \s -> case f s of (g, s') -> first g $ x s'
instance Monad (State s) where
  return a = State (a,)
  (State h) >>= f = State $ uncurry (runState . f) . h
evalState m s = fst $ runState m s
get = State \s -> (s, s)
put n = State \s -> ((), n)
either l r e = case e of Left x -> l x; Right x -> r x
instance Functor (Either a) where fmap f e = either Left (Right . f) e
instance Applicative (Either a) where
  pure = Right
  ef <*> ex = case ef of
    Left s -> Left s
    Right f -> either Left (Right . f) ex
instance Monad (Either a) where
  return = Right
  ex >>= f = either Left f ex
class Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a
asum = foldr (<|>) empty
(*>) = liftA2 \x y -> y
(<*) = liftA2 \x y -> x
many p = liftA2 (:) p (many p) <|> pure []
some p = liftA2 (:) p (many p)
sepBy1 p sep = liftA2 (:) p (many (sep *> p))
sepBy p sep = sepBy1 p sep <|> pure []
between x y p = x *> (p <* y)

-- Map.
data Map k a = Tip | Bin Int k a (Map k a) (Map k a)
instance Functor (Map k) where
  fmap f m = case m of
    Tip -> Tip
    Bin sz k x l r -> Bin sz k (f x) (fmap f l) (fmap f r)
size m = case m of Tip -> 0 ; Bin sz _ _ _ _ -> sz
node k x l r = Bin (1 + size l + size r) k x l r
singleton k x = Bin 1 k x Tip Tip
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
  node rlk rlkx (node k x l rll) (node rk rkx rlr rr)
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r)
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
  node lrk lrkx (node lk lkx ll lrl) (node k x lrr r)
balance k x l r = f k x l r where
  f | size l + size r <= 1 = node
    | 5 * size l + 3 <= 2 * size r = case r of
      Tip -> node
      Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
        then singleL
        else doubleL
    | 5 * size r + 3 <= 2 * size l = case l of
      Tip -> node
      Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
        then singleR
        else doubleR
    | True = node
insert kx x t = case t of
  Tip -> singleton kx x
  Bin sz ky y l r -> case compare kx ky of
    LT -> balance ky y (insert kx x l) r
    GT -> balance ky y l (insert kx x r)
    EQ -> Bin sz kx x l r
insertWith f kx x t = case t of
  Tip -> singleton kx x
  Bin sy ky y l r -> case compare kx ky of
    LT -> balance ky y (insertWith f kx x l) r
    GT -> balance ky y l (insertWith f kx x r)
    EQ -> Bin sy kx (f x y) l r
mlookup kx t = case t of
  Tip -> Nothing
  Bin _ ky y l r -> case compare kx ky of
    LT -> mlookup kx l
    GT -> mlookup kx r
    EQ -> Just y
fromList = foldl (\t (k, x) -> insert k x t) Tip
member k t = maybe False (const True) $ mlookup k t
t ! k = maybe undefined id $ mlookup k t

foldrWithKey f = go where
  go z t = case t of
    Tip -> z
    Bin _ kx x l r -> go (f kx x (go z r)) l

toAscList = foldrWithKey (\k x xs -> (k,x):xs) []
keys = map fst . toAscList

-- Syntax tree.
data Type = TC String | TV String | TAp Type Type
arr a b = TAp (TAp (TC "->") a) b
data Extra = Basic String | Const Int | ChrCon Char | StrCon String | Link String String Qual
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat]
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred
data Constr = Constr String [Type]
data Pred = Pred String Type
data Qual = Qual [Pred] Type

instance Eq Type where
  (TC s) == (TC t) = s == t
  (TV s) == (TV t) = s == t
  (TAp a b) == (TAp c d) = a == c && b == d
  _ == _ = False

instance Eq Pred where (Pred s a) == (Pred t b) = s == t && a == b

data Instance = Instance
  -- Type, e.g. Int for Eq Int.
  Type
  -- Dictionary name, e.g. "{Eq Int}"
  String
  -- Context.
  [Pred]
  -- Method definitions
  (Map String Ast)

data Tycl = Tycl [String] [Instance]

data Neat = Neat
  (Map String Tycl)
  -- | Top-level definitions
  [(String, Ast)]
  -- | Typed ASTs, ready for compilation, including ADTs and methods,
  -- e.g. (==), (Eq a => a -> a -> Bool, select-==)
  [(String, (Qual, Ast))]
  -- | Data constructor table.
  (Map String [Constr])  -- AdtTab
  -- | FFI declarations.
  [(String, Type)]
  -- | Exports.
  [(String, String)]
  -- | Module imports.
  [String]

patVars = \case
  PatLit _ -> []
  PatVar s m -> s : maybe [] patVars m
  PatCon _ args -> concat $ patVars <$> args

fvPro bound expr = case expr of
  V s | not (elem s bound) -> [s]
  A x y -> fvPro bound x `union` fvPro bound y
  L s t -> fvPro (s:bound) t
  Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
  _ -> []

overFreePro s f t = case t of
  E _ -> t
  V s' -> if s == s' then f t else t
  A x y -> A (overFreePro s f x) (overFreePro s f y)
  L s' t' -> if s == s' then t else L s' $ overFreePro s f t'
  Pa vsts -> Pa $ map (\(vs, t) -> (vs, if any (elem s . patVars) vs then t else overFreePro s f t)) vsts

beta s a t = case t of
  E _ -> t
  V v -> if s == v then a else t
  A x y -> A (beta s a x) (beta s a y)
  L v u -> if s == v then t else L v $ beta s a u

showParen b f = if b then ('(':) . f . (')':) else f

-- Parser.
data ParserState = ParserState
  [(Char, (Int, Int))]
  String
  [Int]
  (Map String (Int, Assoc))

readme  (ParserState x _ _ _) = x
landin  (ParserState _ x _ _) = x
indents (ParserState _ _ x _) = x
precs   (ParserState _ _ _ x) = x
putReadme  x (ParserState _ a b c) = ParserState x a b c
putLandin  x (ParserState a _ b c) = ParserState a x b c
modIndents f (ParserState a b x c) = ParserState a b (f x) c
data Parser a = Parser (ParserState -> Either String (a, ParserState))
getParser (Parser p) = p
instance Functor Parser where fmap f x = pure f <*> x
instance Applicative Parser where
  pure x = Parser \inp -> Right (x, inp)
  (Parser f) <*> (Parser x) = Parser \inp -> do
    (fun, t) <- f inp
    (arg, u) <- x t
    pure (fun arg, u)
instance Monad Parser where
  return = pure
  (Parser x) >>= f = Parser \inp -> do
    (a, t) <- x inp
    getParser (f a) t
instance Alternative Parser where
  empty = bad ""
  x <|> y = Parser \inp -> either (const $ getParser y inp) Right $ getParser x inp
getPrecs = Parser \st -> Right (precs st, st)
putPrecs ps = Parser \(ParserState a b c _) -> Right ((), ParserState a b c ps)

notFollowedBy p = do
  saved <- Parser \pasta -> Right (pasta, pasta)
  ret <- p *> pure (bad "") <|> pure (pure ())
  Parser \_ -> Right ((), saved)
  ret

parse f str = getParser f $ ParserState (rowcol str (1, 1)) [] [] $ singleton ":" (5, RAssoc) where
  rowcol s rc = case s of
    [] -> []
    h:t -> (h, rc) : rowcol t (advanceRC (ord h) rc)
  advanceRC n (r, c)
    | n `elem` [10, 11, 12, 13] = (r + 1, 1)
    | n == 9 = (r, (c + 8)`mod`8)
    | True = (r, c + 1)

indentOf pasta = case readme pasta of
  [] -> 1
  (_, (_, c)):_ -> c

ins c pasta = putLandin (c:landin pasta) pasta

angle n pasta = case indents pasta of
  m:ms | m == n -> ins ';' pasta
       | n + 1 <= m -> ins '}' $ angle n $ modIndents tail pasta
  _ -> pasta

curly n pasta = case indents pasta of
  m:ms | m + 1 <= n -> ins '{' $ modIndents (n:) pasta
  [] | 1 <= n -> ins '{' $ modIndents (n:) pasta
  _ -> ins '{' . ins '}' $ angle n pasta

sat f = Parser \pasta -> case landin pasta of
  c:t -> if f c then Right (c, putLandin t pasta) else Left "unsat"
  [] -> case readme pasta of
    [] -> case indents pasta of
      [] -> Left "EOF"
      m:ms | m /= 0 && f '}' -> Right ('}', modIndents tail pasta)
      _ -> Left "unsat"
    (h, _):t | f h -> let
      p' = putReadme t pasta
      in case h of
        '}' -> case indents pasta of
          0:ms -> Right (h, modIndents tail p')
          _ -> Left "unsat"
        '{' -> Right (h, modIndents (0:) p')
        _ -> Right (h, p')
    _ -> Left "unsat"

char c = sat (c ==)

rawSat f = Parser \pasta -> case readme pasta of
  [] -> Left "EOF"
  (h, _):t -> if f h then Right (h, putReadme t pasta) else Left "unsat"

eof = Parser \pasta -> case pasta of
  ParserState [] [] _ _ -> Right ((), pasta)
  _ -> badpos pasta "want eof"

comment = rawSat ('-' ==) *> some (rawSat ('-' ==)) *>
  (rawSat isNewline <|> rawSat (not . isSymbol) *> many (rawSat $ not . isNewline) *> rawSat isNewline) *> pure True
spaces = isNewline <$> rawSat isSpace
whitespace = do
  offside <- or <$> many (spaces <|> comment)
  Parser \pasta -> Right ((), if offside then angle (indentOf pasta) pasta else pasta)

hexValue d
  | d <= '9' = ord d - ord '0'
  | d <= 'F' = 10 + ord d - ord 'A'
  | d <= 'f' = 10 + ord d - ord 'a'
isNewline c = ord c `elem` [10, 11, 12, 13]
isSymbol = (`elem` "!#$%&*+./<=>?@\\^|-~:")
isSmall c = c <= 'z' && 'a' <= c || c == '_'
small = sat isSmall
large = sat \x -> (x <= 'Z') && ('A' <= x)
hexit = sat \x -> (x <= '9') && ('0' <= x)
  || (x <= 'F') && ('A' <= x)
  || (x <= 'f') && ('a' <= x)
digit = sat \x -> (x <= '9') && ('0' <= x)
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> some digit
hexadecimal = foldl (\n d -> 16*n + hexValue d) 0 <$> some hexit
nameTailChar = small <|> large <|> digit <|> char '\''
nameTailed p = liftA2 (:) p $ many nameTailChar

escape = char '\\' *> (sat (`elem` "'\"\\") <|> char 'n' *> pure '\n' <|> char '0' *> pure (chr 0) <|> char 'x' *> (chr <$> hexadecimal))
tokOne delim = escape <|> rawSat (delim /=)

charSeq = mapM char
tokChar = between (char '\'') (char '\'') (tokOne '\'')
quoteStr = between (char '"') (char '"') $ many $ many (charSeq "\\&") *> tokOne '"'
quasiquoteStr = charSeq "[r|" *> quasiquoteBody
quasiquoteBody = charSeq "|]" *> pure [] <|> (:) <$> rawSat (const True) <*> quasiquoteBody
tokStr = quoteStr <|> quasiquoteStr
integer = char '0' *> (char 'x' <|> char 'X') *> hexadecimal <|> decimal
literal = lexeme . fmap E $ Const <$> integer <|> ChrCon <$> tokChar <|> StrCon <$> tokStr
varish = lexeme $ nameTailed small
bad s = Parser \pasta -> badpos pasta s
badpos pasta s = Left $ loc $ ": " ++ s where
  loc = case readme pasta of
    [] -> ("EOF"++)
    (_, (r, c)):_ -> ("row "++) . shows r . (" col "++) . shows c
varId = do
  s <- varish
  if elem s
    ["export", "case", "class", "data", "default", "deriving", "do", "else", "foreign", "if", "import", "in", "infix", "infixl", "infixr", "instance", "let", "module", "newtype", "of", "then", "type", "where", "_"]
    then bad $ "reserved: " ++ s else pure s
varSymish = lexeme $ (:) <$> sat (\c -> isSymbol c && c /= ':') <*> many (sat isSymbol)
varSym = lexeme $ do
  s <- varSymish
  if elem s ["..", "=", "\\", "|", "<-", "->", "@", "~", "=>"] then bad $ "reserved: " ++ s else pure s

conId = lexeme $ nameTailed large
conSymish = lexeme $ liftA2 (:) (char ':') $ many $ sat isSymbol
conSym = do
  s <- conSymish
  if elem s [":", "::"] then bad $ "reserved: " ++ s else pure s
special c = lexeme $ sat (c ==)
comma = special ','
semicolon = special ';'
lParen = special '('
rParen = special ')'
lBrace = special '{'
rBrace = special '}'
lSquare = special '['
rSquare = special ']'
backquote = special '`'

lexeme f = f <* whitespace

lexemePrelude = whitespace *>
  Parser \pasta -> case getParser (res "module" <|> (:[]) <$> char '{') pasta of
    Left _ -> Right ((), curly (indentOf pasta) pasta)
    Right _ -> Right ((), pasta)

curlyCheck f = do
  Parser \pasta -> Right ((), modIndents (0:) pasta)
  r <- f
  Parser \pasta -> let pasta' = modIndents tail pasta in case readme pasta of
    []              -> Right ((), curly 0 pasta')
    ('{', _):_      -> Right ((), pasta')
    (_, (_, col)):_ -> Right ((), curly col pasta')
  pure r

conOf (Constr s _) = s
specialCase (h:_) = '|':conOf h
mkCase t cs = (specialCase cs,
  ( Qual [] $ arr t $ foldr arr (TV "case") $ map (\(Constr _ ts) -> foldr arr (TV "case") ts) cs
  , E $ Basic "I"))
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", [])
scottEncode _ ":" _ = E $ Basic "CONS"
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs)
scottConstr t cs (Constr s ts) = (s,
  (Qual [] $ foldr arr t ts , scottEncode (map conOf cs) s $ mkStrs ts))
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs

mkFFIHelper n t acc = case t of
  TC s -> acc
  TAp (TC "IO") _ -> acc
  TAp (TAp (TC "->") x) y -> L (show n) $ mkFFIHelper (n + 1) y $ A (V $ show n) acc

updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs
addAdt t cs (Neat tycl fs typed dcs ffis ffes ims) =
  Neat tycl fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis ffes ims

emptyTycl = Tycl [] []
addClass classId v (sigs, defs) (Neat tycl fs typed dcs ffis ffes ims) = let
  vars = take (size sigs) $ show <$> [0..]
  selectors = zipWith (\var (s, t) -> (s, (Qual [Pred classId v] t,
    L "@" $ A (V "@") $ foldr L (V var) vars))) vars $ toAscList sigs
  defaults = map (\(s, t) -> if member s sigs then ("{default}" ++ s, t) else error $ "bad default method: " ++ s) $ toAscList defs
  Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
  tycl' = insert classId (Tycl (keys sigs) is) tycl
  in if null ms then Neat tycl' (defaults ++ fs) (selectors ++ typed) dcs ffis ffes ims
    else error $ "duplicate class: " ++ classId

addInstance classId ps ty ds (Neat tycl fs typed dcs ffis ffes ims) = let
  Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
  tycl' = insert classId (Tycl ms $ Instance ty name ps (fromList ds):is) tycl
  name = '{':classId ++ (' ':shows ty "}")
  in Neat tycl' fs typed dcs ffis ffes ims

addFFI foreignname ourname t (Neat tycl fs typed dcs ffis ffes ims) = let
  fn = A (E $ Basic "F") $ E $ Const $ length ffis
  in Neat tycl fs ((ourname, (Qual [] t, mkFFIHelper 0 t fn)) : typed) dcs ((foreignname, t):ffis) ffes ims
addDefs ds (Neat tycl fs typed dcs ffis ffes ims) = Neat tycl (ds ++ fs) typed dcs ffis ffes ims
addImport im (Neat tycl fs typed dcs ffis exs ims) = Neat tycl fs typed dcs ffis exs (im:ims)
addExport e f (Neat tycl fs typed dcs ffis ffes ims) = Neat tycl fs typed dcs ffis ((e, f):ffes) ims

parseErrorRule = Parser \pasta -> case indents pasta of
  m:ms | m /= 0 -> Right ('}', modIndents tail pasta)
  _ -> badpos pasta "missing }"

res w@(h:_) = reservedSeq *> pure w <|> bad ("want \"" ++ w ++ "\"") where
  reservedSeq = if elem w ["let", "where", "do", "of"]
    then curlyCheck $ lexeme $ charSeq w *> notFollowedBy nameTailChar
    else lexeme $ charSeq w *> notFollowedBy (if isSmall h then nameTailChar else sat isSymbol)

paren = between lParen rParen
braceSep f = between lBrace (rBrace <|> parseErrorRule) $ foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) semicolon

maybeFix s x = if elem s $ fvPro [] x then A (V "fix") (L s x) else x

nonemptyTails [] = []
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt

joinIsFail t = A (L "join#" t) (V "fail#")

addLets ls x = foldr triangle x components where
  vs = fst <$> ls
  ios = foldr (\(s, dsts) (ins, outs) ->
    (foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
    (Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
  components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
  triangle names expr = let
    tnames = nonemptyTails names
    suball t = foldr (\(x:xt) t -> overFreePro x (const $ foldl (\acc s -> A acc (V s)) (V x) xt) t) t tnames
    insLams vs t = foldr L t vs
    in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ insLams xt $ suball $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames

data Assoc = NAssoc | LAssoc | RAssoc
instance Eq Assoc where
  NAssoc == NAssoc = True
  LAssoc == LAssoc = True
  RAssoc == RAssoc = True
  _ == _ = False
precOf s precTab = maybe 9 fst $ mlookup s precTab
assocOf s precTab = maybe LAssoc snd $ mlookup s precTab

opFold precTab f x xs = case xs of
  [] -> pure x
  (op, y):xt -> case find (\(op', _) -> assocOf op precTab /= assocOf op' precTab) xt of
    Nothing -> case assocOf op precTab of
      NAssoc -> case xt of
        [] -> pure $ f op x y
        y:yt -> bad "NAssoc repeat"
      LAssoc -> pure $ foldl (\a (op, y) -> f op a y) x xs
      RAssoc -> pure $ foldr (\(op, y) b -> \e -> f op e (b y)) id xs $ x
    Just y -> bad "Assoc clash"

qconop = conSym <|> res ":" <|> between backquote backquote conId

qconsym = conSym <|> res ":"

op = qconsym <|> varSym <|> between backquote backquote (conId <|> varId)
con = conId <|> paren qconsym
var = varId <|> paren varSym

tycon = do
  s <- conId
  pure $ if s == "String" then TAp (TC "[]") (TC "Char") else TC s

aType =
  lParen *>
    (   rParen *> pure (TC "()")
    <|> (foldr1 (TAp . TAp (TC ",")) <$> sepBy1 _type comma) <* rParen)
  <|> tycon
  <|> TV <$> varId
  <|> (lSquare *> (rSquare *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* rSquare)))
bType = foldl1 TAp <$> some aType
_type = foldr1 arr <$> sepBy bType (res "->")

fixityDecl w a = do
  res w
  n <- lexeme integer
  os <- sepBy op comma
  precs <- getPrecs
  putPrecs $ foldr (\o m -> insert o (n, a) m) precs os
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc

cDecls = first fromList . second fromList . foldr ($) ([], []) <$> braceSep cDecl
cDecl = first . (:) <$> genDecl <|> second . (++) <$> defSemi

genDecl = (,) <$> var <*> (res "::" *> _type)

classDecl = res "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (res "where" *> cDecls))

simpleClass = Pred <$> conId <*> _type
scontext = (:[]) <$> simpleClass <|> paren (sepBy simpleClass comma)

instDecl = res "instance" *>
  ((\ps cl ty defs -> addInstance cl ps ty defs) <$>
  (scontext <* res "=>" <|> pure [])
    <*> conId <*> _type <*> (res "where" *> braceDef))

letin = addLets <$> between (res "let") (res "in") braceDef <*> expr
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
  (res "if" *> expr) <*> (res "then" *> expr) <*> (res "else" *> expr)
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]")

alts = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->")
cas = flip A <$> between (res "case") (res "of") expr <*> alts
lamCase = curlyCheck (res "case") *> alts
lam = res "\\" *> (lamCase <|> liftA2 onePat (some apat) (res "->" *> expr))

flipPairize y x = A (A (V ",") x) y
moreCommas = foldr1 (A . A (V ",")) <$> sepBy1 expr comma
thenComma = comma *> ((flipPairize <$> moreCommas) <|> pure (A (V ",")))
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id)
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (:"") <$> comma)) <*> expr
section = lParen *> (parenExpr <* rParen <|> rightSect <* rParen <|> rParen *> pure (V "()"))

maybePureUnit = maybe (V "pure" `A` V "()") id
stmt = (\p x -> Just . A (V ">>=" `A` x) . onePat [p] . maybePureUnit) <$> pat <*> (res "<-" *> expr)
  <|> (\x -> Just . maybe x (\y -> (V ">>=" `A` x) `A` (L "_" y))) <$> expr
  <|> (\ds -> Just . addLets ds . maybePureUnit) <$> (res "let" *> braceDef)
doblock = res "do" *> (maybePureUnit . foldr ($) Nothing <$> braceSep stmt)

compQual =
  (\p xs e -> A (A (V "concatMap") $ onePat [p] e) xs)
    <$> pat <*> (res "<-" *> expr)
  <|> (\b e -> A (A (A (V "if") b) e) $ V "[]") <$> expr
  <|> addLets <$> (res "let" *> braceDef)

sqExpr = between lSquare rSquare $
  ((&) <$> expr <*>
    (   res ".." *>
      (   (\hi lo -> (A (A (V "enumFromTo") lo) hi)) <$> expr
      <|> pure (A (V "enumFrom"))
      )
    <|> res "|" *>
      ((. A (V "pure")) . foldr (.) id <$> sepBy1 compQual comma)
    <|> (\t h -> listify (h:t)) <$> many (comma *> expr)
    )
  )
  <|> pure (V "[]")

atom = ifthenelse <|> doblock <|> letin <|> sqExpr <|> section
  <|> cas <|> lam <|> (paren comma *> pure (V ","))
  <|> V <$> (con <|> var) <|> literal

aexp = foldl1 A <$> some atom

withPrec precTab n p = p >>= \s ->
  if n == precOf s precTab then pure s else Parser $ const $ Left ""

exprP n = if n <= 9
  then getPrecs >>= \precTab
    -> exprP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n op <*> exprP (succ n)) >>= \as
    -> opFold precTab (\op x y -> A (A (V op) x) y) a as
  else aexp
expr = exprP 0

gcon = conId <|> paren (qconsym <|> (:"") <$> comma) <|> (lSquare *> rSquare *> pure "[]")

apat = PatVar <$> var <*> (res "@" *> (Just <$> apat) <|> pure Nothing)
  <|> flip PatVar Nothing <$> (res "_" *> pure "_")
  <|> flip PatCon [] <$> gcon
  <|> PatLit <$> literal
  <|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" [])
    <$> between lSquare rSquare (sepBy pat comma)
  <|> paren (foldr1 pairPat <$> sepBy1 pat comma <|> pure (PatCon "()" []))
  where pairPat x y = PatCon "," [x, y]

binPat f x y = PatCon f [x, y]
patP n = if n <= 9
  then getPrecs >>= \precTab
    -> patP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n qconop <*> patP (succ n)) >>= \as
    -> opFold precTab binPat a as
  else PatCon <$> gcon <*> many apat <|> apat
pat = patP 0

maybeWhere p = (&) <$> p <*> (res "where" *> (addLets <$> braceDef) <|> pure id)

guards s = maybeWhere $ res s *> expr <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
  V "True" -> \_ -> y
  _ -> A (A (A (V "if") x) y)
  ) <$> (res "|" *> expr) <*> (res s *> expr))

onePat vs x = joinIsFail $ Pa [(vs, x)]
defOnePat vs x = Pa [(vs, x)]
opDef x f y rhs = [(f, defOnePat [x, y] rhs)]
leftyPat p expr = case pvars of
  [] -> []
  (h:t) -> let gen = '@':h in
    (gen, expr):map (\v -> (v, A (Pa [([p], V v)]) $ V gen)) pvars
  where
  pvars = filter (/= "_") $ patVars p
def = liftA2 (\l r -> [(l, r)]) var (liftA2 defOnePat (many apat) $ guards "=")
  <|> (pat >>= \x -> opDef x <$> varSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=")
coalesce = \case
  [] -> []
  h@(s, x):t -> case t of
    [] -> [h]
    (s', x'):t' -> let
      f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
      f _ _ = error "bad multidef"
      in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
defSemi = coalesce . concat <$> sepBy1 def (some semicolon)
braceDef = concat <$> braceSep defSemi

simpleType c vs = foldl TAp (TC c) (map TV vs)
conop = conSym <|> between backquote backquote conId
constr = (\x c y -> Constr c [x, y]) <$> aType <*> conop <*> aType
  <|> Constr <$> conId <*> many aType
adt = addAdt <$> between (res "data") (res "=") (simpleType <$> conId <*> many varId) <*> sepBy constr (res "|")

impDecl = addImport <$> (res "import" *> conId)

topdecls = braceSep
  $   adt
  <|> classDecl
  <|> instDecl
  <|> res "foreign" *>
    (   res "import" *> var *> (addFFI <$> lexeme tokStr <*> var <*> (res "::" *> _type))
    <|> res "export" *> var *> (addExport <$> lexeme tokStr <*> var)
    )
  <|> addDefs <$> defSemi
  <|> fixity *> pure id
  <|> impDecl

haskell = between lexemePrelude eof $ some $ (,) <$> (res "module" *> conId <* res "where" <|> pure "Main") <*> topdecls

parseProgram s = fst <$> parse haskell s

-- Primitives.
primAdts =
  [ (TC "()", [Constr "()" []])
  , (TC "Bool", [Constr "True" [], Constr "False" []])
  , (TAp (TC "[]") (TV "a"), [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]])
  , (TAp (TAp (TC ",") (TV "a")) (TV "b"), [Constr "," [TV "a", TV "b"]])
  ]

prims = let
  ro = E . Basic
  dyad s = TC s `arr` (TC s `arr` TC s)
  bin s = A (ro "Q") (ro s)
  in map (second (first $ Qual [])) $
    [ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
    , ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
    , ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
    , ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
    , ("fix", (arr (arr (TV "a") (TV "a")) (TV "a"), ro "Y"))
    , ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
    , ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
    , ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
    , ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
    , ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro "V"))
    , ("primitiveError", (arr (TAp (TC "[]") (TC "Char")) (TV "a"), ro "ERR"))
    , ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))), ro "NEWREF"))
    , ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
      A (ro "T") (ro "READREF")))
    , ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
      A (A (ro "R") (ro "WRITEREF")) (ro "B")))
    , ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
    , ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
    , ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    , ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    ]
    ++ map (\(s, v) -> (s, (dyad "Int", bin v)))
      [ ("intAdd", "ADD")
      , ("intSub", "SUB")
      , ("intMul", "MUL")
      , ("intDiv", "DIV")
      , ("intMod", "MOD")
      , ("intQuot", "DIV")
      , ("intRem", "MOD")
      ]

-- Conversion to De Bruijn indices.
data LC = Ze | Su LC | Pass IntTree | La LC | App LC LC

debruijn n e = case e of
  E x -> Pass $ Lf x
  V v -> maybe (Pass $ LfVar v) id $
    foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
  A x y -> App (debruijn n x) (debruijn n y)
  L s t -> La (debruijn (s:n) t)

-- Kiselyov bracket abstraction.
data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem

lf = Lf . Basic

x ## y = case x of
  Defer -> case y of
    Defer -> Need $ Closed (Nd (Nd (lf "S") (lf "I")) (lf "I"))
    Closed d -> Need $ Closed (Nd (lf "T") d)
    Need e -> Need $ Closed (Nd (lf "S") (lf "I")) ## e
    Weak e -> Need $ Closed (lf "T") ## e
  Closed d -> case y of
    Defer -> Need $ Closed d
    Closed dd -> Closed $ Nd d dd
    Need e -> Need $ Closed (Nd (lf "B") d) ## e
    Weak e -> Weak $ Closed d ## e
  Need e -> case y of
    Defer -> Need $ Closed (lf "S") ## e ## Closed (lf "I")
    Closed d -> Need $ Closed (Nd (lf "R") d) ## e
    Need ee -> Need $ Closed (lf "S") ## e ## ee
    Weak ee -> Need $ Closed (lf "C") ## e ## ee
  Weak e -> case y of
    Defer -> Need e
    Closed d -> Weak $ e ## Closed d
    Need ee -> Need $ Closed (lf "B") ## e ## ee
    Weak ee -> Weak $ e ## ee

babs t = case t of
  Ze -> Defer
  Su x -> Weak $ babs x
  Pass x -> Closed x
  La t -> case babs t of
    Defer -> Closed $ lf "I"
    Closed d -> Closed $ Nd (lf "K") d
    Need e -> e
    Weak e -> Closed (lf "K") ## e
  App x y -> babs x ## babs y

nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x

optim t = case t of
  Nd x y -> go (optim x) (optim y)
  _ -> t
  where
  go (Lf (Basic "I")) q = q
  go p q@(Lf (Basic c)) = case c of
    "K" -> case p of
      Lf (Basic "B") -> lf "BK"
      _ -> Nd p q
    "I" -> case p of
      Lf (Basic r) -> case r of
        "C" -> lf "T"
        "B" -> lf "I"
        "K" -> lf "KI"
        _ -> Nd p q
      Nd p1 p2 -> case p1 of
        Lf (Basic "B") -> p2
        Lf (Basic "R") -> Nd (lf "T") p2
        _ -> Nd (Nd p1 p2) q
      _ -> Nd p q
    "T" -> case p of
      Nd (Lf (Basic "B")) (Lf (Basic r)) -> case r of
        "C" -> lf "V"
        "BK" -> lf "LEFT"
        _ -> Nd p q
      _ -> Nd p q
    "V" -> case p of
      Nd (Lf (Basic "B")) (Lf (Basic "BK")) -> lf "CONS"
      _ -> Nd p q
    _ -> Nd p q
  go p q = Nd p q

app01 s x y = maybe (A (L s x) y) snd $ go x where
  go expr = case expr of
    E _ -> Just (False, expr)
    V v -> Just $ if s == v then (True, y) else (False, expr)
    A l r -> do
      (a, l') <- go l
      (b, r') <- go r
      if a && b then Nothing else pure (a || b, A l' r')
    L v t -> if v == s then Just (False, expr) else second (L v) <$> go t

optiApp t = case t of
  A x y -> let
    x' = optiApp x
    y' = optiApp y
    in case x' of
      L s v -> app01 s v y'
      _ -> A x' y'
  L s x -> L s (optiApp x)
  _ -> t

-- Pattern compiler.
rewritePats dcs = \case
  [] -> pure $ V "join#"
  vsxs@((as0, _):_) -> case as0 of
    [] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
    _ -> do
      let k = length as0
      n <- get
      put $ n + k
      let vs@(vh:vt) = take k $ (`shows` "#") <$> [n..]
      cs <- flip mapM vsxs \(a:at, x) -> (a,) <$> foldM (\b (p, v) -> rewriteCase dcs v Tip [(p, b)]) x (zip at vt)
      flip (foldr L) vs <$> rewriteCase dcs vh Tip cs

patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y

rewriteCase dcs caseVar tab = \case
  [] -> flush $ V "join#"
  ((v, x):rest) -> go v x rest
  where
  rec = rewriteCase dcs caseVar
  go v x rest = case v of
    PatLit lit -> patEq lit (V caseVar) x <$> rec Tip rest >>= flush
    PatVar s m -> let x' = beta s (V caseVar) x in case m of
      Nothing -> A (L "join#" x') <$> rec Tip rest >>= flush
      Just v' -> go v' x' rest
    PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
  flush onFail = case toAscList tab of
    [] -> pure onFail
    -- TODO: Check rest of `tab` lies in cs.
    (firstC, _):_ -> do
      let cs = maybe undefined id $ dcs firstC
      jumpTable <- mapM (\(Constr s ts) -> case mlookup s tab of
          Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
          Just f -> rewritePats dcs $ f []
        ) cs
      pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail

secondM f (a, b) = (a,) <$> f b
patternCompile dcs t = optiApp $ evalState (go t) 0 where
  go t = case t of
    E _ -> pure t
    V _ -> pure t
    A x y -> liftA2 A (go x) (go y)
    L s x -> L s <$> go x
    Pa vsxs -> mapM (secondM go) vsxs >>= rewritePats dcs

-- Unification and matching.
apply sub t = case t of
  TC v -> t
  TV v -> maybe t id $ lookup v sub
  TAp a b -> TAp (apply sub a) (apply sub b)

(@@) s1 s2 = map (second (apply s1)) s2 ++ s1

occurs s t = case t of
  TC v -> False
  TV v -> s == v
  TAp a b -> occurs s a || occurs s b

varBind s t = case t of
  TC v -> Right [(s, t)]
  TV v -> Right $ if v == s then [] else [(s, t)]
  TAp a b -> if occurs s t then Left "occurs check" else Right [(s, t)]

ufail t u = Left $ ("unify fail: "++) . shows t . (" vs "++) . shows u $ ""

mgu t u = case t of
  TC a -> case u of
    TC b -> if a == b then Right [] else ufail t u
    TV b -> varBind b t
    TAp a b -> ufail t u
  TV a -> varBind a u
  TAp a b -> case u of
    TC b -> ufail t u
    TV b -> varBind b t
    TAp c d -> mgu a c >>= unify b d

unify a b s = (@@ s) <$> mgu (apply s a) (apply s b)

merge s1 s2 = if all (\v -> apply s1 (TV v) == apply s2 (TV v))
  $ map fst s1 `intersect` map fst s2 then Just $ s1 ++ s2 else Nothing

match h t = case h of
  TC a -> case t of
    TC b | a == b -> Just []
    _ -> Nothing
  TV a -> Just [(a, t)]
  TAp a b -> case t of
    TAp c d -> case match a c of
      Nothing -> Nothing
      Just ac -> case match b d of
        Nothing -> Nothing
        Just bd -> merge ac bd
    _ -> Nothing

-- Type inference.
instantiate' t n tab = case t of
  TC s -> ((t, n), tab)
  TV s -> case lookup s tab of
    Nothing -> let va = TV $ show n in ((va, n + 1), (s, va):tab)
    Just v -> ((v, n), tab)
  TAp x y -> let
    ((t1, n1), tab1) = instantiate' x n tab
    ((t2, n2), tab2) = instantiate' y n1 tab1
    in ((TAp t1 t2, n2), tab2)

instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab)

instantiate (Qual ps t) n = first (Qual ps1) $ fst $ instantiate' t n1 tab where
  ((ps1, n1), tab) = foldr instantiatePred (([], n), []) ps

proofApply sub a = case a of
  Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
  A x y -> A (proofApply sub x) (proofApply sub y)
  L s t -> L s $ proofApply sub t
  _ -> a

typeAstSub sub (t, a) = (apply sub t, proofApply sub a)

infer typed loc ast csn@(cs, n) = case ast of
  E x -> Right $ case x of
    Const _ -> ((TC "Int", ast), csn)
    ChrCon _ -> ((TC "Char", ast), csn)
    StrCon _ -> ((TAp (TC "[]") (TC "Char"), ast), csn)
    Link im s q -> insta q
  V s -> maybe (Left $ "undefined: " ++ s) Right
    $ (\t -> ((t, ast), csn)) <$> lookup s loc
    <|> insta . fst <$> mlookup s typed
  A x y -> infer typed loc x (cs, n + 1) >>=
    \((tx, ax), csn1) -> infer typed loc y csn1 >>=
    \((ty, ay), (cs2, n2)) -> unify tx (arr ty va) cs2 >>=
    \cs -> Right ((va, A ax ay), (cs, n2))
  L s x -> first (\(t, a) -> (arr va t, L s a)) <$> infer typed ((s, va):loc) x (cs, n + 1)
  where
  va = TV $ show n
  insta ty = ((ty1, foldl A ast (map Proof preds)), (cs, n1))
    where (Qual preds ty1, n1) = instantiate ty n

findInstance tycl qn@(q, n) p@(Pred cl ty) insts = case insts of
  [] -> let v = '*':show n in Right (((p, v):q, n + 1), V v)
  (modName, Instance h name ps _):rest -> case match h ty of
    Nothing -> findInstance tycl qn p rest
    Just subs -> foldM (\(qn1, t) (Pred cl1 ty1) -> second (A t)
      <$> findProof tycl (Pred cl1 $ apply subs ty1) qn1) (qn, if modName == "" then V name else E $ Link modName name undefined) ps

findProof tycl pred@(Pred classId t) psn@(ps, n) = case lookup pred ps of
  Nothing -> findInstance tycl psn pred $ tycl classId
  Just s -> Right (psn, V s)

prove tycl psn a = case a of
  Proof pred -> findProof tycl pred psn
  A x y -> prove tycl psn x >>= \(psn1, x1) ->
    second (A x1) <$> prove tycl psn1 y
  L s t -> second (L s) <$> prove tycl psn t
  _ -> Right (psn, a)

data Dep a = Dep ([String] -> Either String ([String], a))
instance Functor Dep where
  fmap f = \(Dep mf) -> Dep \g -> do
    (g', x) <- mf g
    pure (g', f x)
instance Applicative Dep where
  pure x = Dep \g -> Right (g, x)
  (Dep mf) <*> (Dep mx) = Dep \g -> do
    (g', f) <- mf g
    (g'', x) <- mx g'
    pure (g'', f x)
addDep s = Dep \deps -> Right (if s `elem` deps then deps else s : deps, ())
badDep s = Dep $ const $ Left s
runDep (Dep f) = f []

astLink typed locals imps mods ast = runDep $ go [] ast where
  go bound ast = case ast of
    V s
      | elem s bound -> pure ast
      | member s locals -> case findImportSym imps mods s of
        [] -> (if member s typed then pure () else addDep s) *> pure ast
        _ -> badDep $ "ambiguous: " ++ s
      | True -> case findImportSym imps mods s of
        [] -> badDep $ "missing: " ++ s
        [(im, t)] -> pure $ E $ Link im s t
        _ -> badDep $ "ambiguous: " ++ s
    A x y -> A <$> go bound x <*> go bound y
    L s t -> L s <$> go (s:bound) t
    _ -> pure ast

depthFirstSearch = (foldl .) \relation st@(visited, sequence) vertex ->
  if vertex `elem` visited then st else second (vertex:)
    $ depthFirstSearch relation (vertex:visited, sequence) (relation vertex)

spanningSearch   = (foldl .) \relation st@(visited, setSequence) vertex ->
  if vertex `elem` visited then st else second ((:setSequence) . (vertex:))
    $ depthFirstSearch relation (vertex:visited, []) (relation vertex)

scc ins outs = spanning . depthFirst where
  depthFirst = snd . depthFirstSearch outs ([], [])
  spanning   = snd . spanningSearch   ins  ([], [])

forFree cond f bound t = case t of
  E _ -> t
  V s -> if (not $ s `elem` bound) && cond s then f t else t
  A x y -> A (rec bound x) (rec bound y)
  L s t' -> L s $ rec (s:bound) t'
  where rec = forFree cond f

inferno tycl typed defmap syms = let
  loc = zip syms $ TV . (' ':) <$> syms
  principal (acc, (subs, n)) s = do
    expr <- maybe (Left $ "missing: " ++ s) Right (mlookup s defmap)
    ((t, a), (ms, n1)) <- infer typed loc expr (subs, n)
    cs <- unify (TV (' ':s)) t ms
    Right ((s, (t, a)):acc, (cs, n1))
  gatherPreds (acc, psn) (s, (t, a)) = do
    (psn, a) <- prove tycl psn a
    pure ((s, (t, a)):acc, psn)
  in do
    (stas, (soln, _)) <- foldM principal ([], ([], 0)) syms
    stas <- pure $ second (typeAstSub soln) <$> stas
    (stas, (ps, _)) <- foldM gatherPreds ([], ([], 0)) $ second (typeAstSub soln) <$> stas
    let
      preds = fst <$> ps
      dicts = snd <$> ps
      applyDicts (s, (t, a)) = (s, (Qual preds t,
        foldr L (forFree (`elem` syms) (\t -> foldl A t $ V <$> dicts) [] a) dicts))
    pure $ map applyDicts stas

findImportSym imps mods s = concat [maybe [] (\(t, _) -> [(im, t)]) $ mlookup s qas | im <- imps, let qas = fst $ mods ! im]

inferDefs tycl defs typed = do
  let
    insertUnique m (s, (_, t)) = case mlookup s m of
      Nothing -> case mlookup s typed of
        Nothing -> Right $ insert s t m
        _ -> Left $ "reserved: " ++ s
      _ -> Left $ "duplicate: " ++ s
    addEdges (sym, (deps, _)) (ins, outs) = (foldr (\dep es -> insertWith union dep [sym] es) ins deps, insertWith union sym deps outs)
    graph = foldr addEdges (Tip, Tip) defs
  defmap <- foldM insertUnique Tip defs
  let
    ins k = maybe [] id $ mlookup k $ fst graph
    outs k = maybe [] id $ mlookup k $ snd graph
    typeTab = fst <$> typed
    inferComponent typed syms = foldr (uncurry insert) typed <$> inferno tycl typed defmap syms
  foldM inferComponent typed $ scc ins outs $ keys defmap

dictVars ps n = (zip ps $ map (('*':) . show) [n..], n + length ps)

inferTypeclasses tycl typeOfMethod typed dcs linker ienv = foldM perClass typed $ toAscList ienv where
  perClass typed (classId, Tycl sigs insts) = foldM perInstance typed insts where
    perInstance typed (Instance ty name ps idefs) = do
      let
        dvs = map snd $ fst $ dictVars ps 0
        perMethod s = do
          let rawExpr = maybe (V $ "{default}" ++ s) id $ mlookup s idefs
          expr <- snd <$> linker (patternCompile dcs rawExpr)
          (ta, (sub, n)) <- either (Left . (name++) . (" "++) . (s++) . (": "++)) Right
            $ infer typed [] expr ([], 0)
          let
            (tx, ax) = typeAstSub sub ta
-- e.g. qc = Eq a => a -> a -> Bool
-- We instantiate: Eq a1 => a1 -> a1 -> Bool.
            qc = typeOfMethod s
            (Qual [Pred _ headT] tc, n1) = instantiate qc n
-- Mix the predicates `ps` with the type of `headT`, applying a
-- substitution such as (a1, [a]) so the variable names match.
-- e.g. Eq a => [a] -> [a] -> Bool
            Just subc = match headT ty
            (Qual ps2 t2, n2) = instantiate (Qual ps $ apply subc tc) n1
          case match tx t2 of
            Nothing -> Left "class/instance type conflict"
            Just subx -> do
              ((ps3, _), tr) <- prove tycl (dictVars ps2 0) (proofApply subx ax)
              if length ps2 /= length ps3
                then Left $ ("want context: "++) . (foldr (.) id $ shows . fst <$> ps3) $ name
                else pure tr
      ms <- mapM perMethod sigs
      pure $ insert name (Qual [] $ TC "DICTIONARY", flip (foldr L) dvs $ L "@" $ foldl A (V "@") ms) typed

neatNew = Neat Tip [] [] Tip [] [] []

neatPrim = foldr (uncurry addAdt) (Neat Tip [] prims Tip [] [] []) primAdts

typedAsts (Neat _ _ tas _ _ _ _) = tas
typeclasses (Neat tcs _ _ _ _ _ _) = tcs
dataCons (Neat _ _ _ dcs _ _ _) = dcs

soloPrim = singleton "#" (fromList $ typedAsts neatPrim, ([], []))

tabulateModules mods = foldM ins (singleton "#" neatPrim) $ go <$> mods where
  go (name, prog) = (name, foldr ($) neatNew prog)
  ins tab (k, v) = case mlookup k tab of
    Nothing -> Right $ insert k v tab
    Just _ -> Left $ "duplicate module: " ++ k

null xs = case xs of
  [] -> True
  _ -> False

inferModule tab acc name = case mlookup name acc of
  Nothing -> do
    let
      Neat rawIenv defs typedList adtTab ffis ffes rawImps = tab ! name
      typed = fromList typedList
      fillSigs (cl, Tycl sigs is) = (cl,) $ case sigs of
        [] -> Tycl (findSigs cl) is
        _ -> Tycl sigs is
      findSigs cl = maybe (error $ "no sigs: " ++ cl) id $ find (not . null) [maybe [] (\(Tycl sigs _) -> sigs) $ mlookup cl $ typeclasses (tab ! im) | im <- imps]
      ienv = fromList $ fillSigs <$> toAscList rawIenv
      imps = "#":rawImps
      locals = fromList $ map (, ()) $ (fst <$> typedList) ++ (fst <$> defs)
      insts im (Tycl _ is) = (im,) <$> is
      classes im = if im == "" then ienv else typeclasses $ tab ! im
      tycl classId = concat [maybe [] (insts im) $ mlookup classId $ classes im | im <- "":imps]
      dcs s = foldr (<|>) (mlookup s adtTab) $ map (\im -> mlookup s $ dataCons $ tab ! im) imps
      typeOfMethod s = maybe undefined id $ foldr (<|>) (fst <$> mlookup s typed) [fmap fst $ lookup s $ typedAsts $ tab ! im | im <- imps]
    acc' <- foldM (inferModule tab) acc imps
    let linker = astLink typed locals imps acc'
    depdefs <- mapM (\(s, t) -> (s,) <$> linker (patternCompile dcs t)) defs
    typed <- inferDefs tycl depdefs typed
    typed <- inferTypeclasses tycl typeOfMethod typed dcs linker ienv
    Right $ insert name (typed, (ffis, ffes)) acc'
  Just _ -> Right acc

untangle s = do
  tab <- parseProgram s >>= tabulateModules
  foldM (inferModule tab) soloPrim $ keys tab

optiComb' (subs, combs) (s, lamb) = let
  gosub t = case t of
    LfVar v -> maybe t id $ lookup v subs
    Nd a b -> Nd (gosub a) (gosub b)
    _ -> t
  c = optim $ gosub $ nolam $ optiApp lamb
  combs' = combs . ((s, c):)
  in case c of
    Lf (Basic _) -> ((s, c):subs, combs')
    LfVar v -> if v == s then (subs, combs . ((s, Nd (lf "Y") (lf "I")):)) else ((s, gosub c):subs, combs')
    _ -> (subs, combs')
optiComb lambs = ($[]) . snd $ foldl optiComb' ([], id) lambs

instance Show Type where
  showsPrec _ = \case
    TC s -> (s++)
    TV s -> (s++)
    TAp (TAp (TC "->") a) b -> showParen True $ shows a . (" -> "++) . shows b
    TAp a b -> showParen True $ shows a . (' ':) . shows b
instance Show Pred where
  showsPrec _ (Pred s t) = (s++) . (' ':) . shows t . (" => "++)
instance Show Qual where
  showsPrec _ (Qual ps t) = foldr (.) id (map shows ps) . shows t
instance Show Extra where
  showsPrec _ = \case
    Basic s -> (s++)
    Const i -> shows i
    ChrCon c -> shows c
    StrCon s -> shows s
    Link im s _ -> (im++) . ('.':) . (s++)
instance Show Pat where
  showsPrec _ = \case
    PatLit e -> shows e
    PatVar s mp -> (s++) . maybe id ((('@':) .) . shows) mp
    PatCon s ps -> (s++) . foldr (.) id (((' ':) .) . shows <$> ps)

showVar s@(h:_) = showParen (elem h ":!#$%&*+./<=>?@\\^|-~") (s++)

instance Show Ast where
  showsPrec prec = \case
    E e -> shows e
    V s -> showVar s
    A x y -> showParen (1 <= prec) $ shows x . (' ':) . showsPrec 1 y
    L s t -> showParen True $ ('\\':) . (s++) . (" -> "++) . shows t
    Pa vsts -> ('\\':) . showParen True (foldr (.) id $ intersperse (';':) $ map (\(vs, t) -> foldr (.) id (intersperse (' ':) $ map (showParen True . shows) vs) . (" -> "++) . shows t) vsts)
    Proof p -> ("{Proof "++) . shows p . ("}"++)

instance Show IntTree where
  showsPrec prec = \case
    LfVar s -> showVar s
    Lf extra -> shows extra
    Nd x y -> showParen (1 <= prec) $ showsPrec 0 x . (' ':) . showsPrec 1 y

disasm (s, t) = (s++) . (" = "++) . shows t . (";\n"++)

dumpWith dumper s = case untangle s of
  Left err -> err
  Right tab -> foldr ($) [] $ map (\(name, mod) -> ("module "++) . (name++) . ('\n':) . (foldr (.) id $ dumper mod)) $ toAscList tab

dumpCombs (typed, _) = map disasm $ optiComb $ lambsList typed

dumpLambs (typed, _) = map (\(s, (_, t)) -> (s++) . (" = "++) . shows t . ('\n':)) $ toAscList typed

dumpTypes (typed, _) = map (\(s, (q, _)) -> (s++) . (" :: "++) . shows q . ('\n':)) $ toAscList typed

-- Code generation.
appCell (hp, bs) x y = (Right hp, (hp + 2, bs . (x:) . (y:)))

enc tab mem = \case
  Lf n -> case n of
    Basic c -> (Right $ comEnum c, mem)
    Const c -> appCell mem (Right $ comEnum "NUM") $ Right c
    ChrCon c -> appCell mem (Right $ comEnum "NUM") $ Right $ ord c
    StrCon s -> enc tab mem $ foldr (\h t -> Nd (Nd (lf "CONS") (Lf $ ChrCon h)) t) (lf "K") s
    Link m s _ -> (Left (m, s), mem)
  LfVar s -> maybe (error $ "resolve " ++ s) (, mem) $ mlookup s tab
  Nd x y -> let
    (xAddr, mem') = enc tab mem x
    (yAddr, mem'') = enc tab mem' y
    in appCell mem'' xAddr yAddr

asm hp0 combs = tabmem where
  tabmem = foldl (\(as, m) (s, t) -> let (p, m') = enc (fst tabmem) m t
    in (insert s p as, m')) (Tip, (hp0, id)) combs

argList t = case t of
  TC s -> [TC s]
  TV s -> [TV s]
  TAp (TC "IO") (TC u) -> [TC u]
  TAp (TAp (TC "->") x) y -> x : argList y

cTypeName (TC "()") = "void"
cTypeName (TC "Int") = "int"
cTypeName (TC "Char") = "int"

ffiDeclare (name, t) = let tys = argList t in concat
  [cTypeName $ last tys, " ", name, "(", intercalate "," $ cTypeName <$> init tys, ");\n"]

ffiArgs n t = case t of
  TC s -> ("", ((True, s), n))
  TAp (TC "IO") (TC u) -> ("", ((False, u), n))
  TAp (TAp (TC "->") x) y -> first (((if 3 <= n then ", " else "") ++ "num(" ++ shows n ")") ++) $ ffiArgs (n + 1) y

ffiDefine n ffis = case ffis of
  [] -> id
  (name, t):xt -> let
    (args, ((isPure, ret), count)) = ffiArgs 2 t
    lazyn = ("lazy2(" ++) . shows (if isPure then count - 1 else count + 1) . (", " ++)
    cont tgt = if isPure then ("_I, "++) . tgt else ("app(arg("++) . shows (count + 1) . ("), "++) . tgt . ("), arg("++) . shows count . (")"++)
    longDistanceCall = (name++) . ("("++) . (args++) . ("); "++) . lazyn
    in ("case " ++) . shows n . (": " ++) . if ret == "()"
      then longDistanceCall . cont ("_K"++) . ("); break;"++) . ffiDefine (n - 1) xt
      else ("{u r = "++) . longDistanceCall . cont ("app(_NUM, r)" ++) . ("); break;}\n"++) . ffiDefine (n - 1) xt

genMain n = "int main(int argc,char**argv){env_argc=argc;env_argv=argv;rts_reduce(" ++ shows n ");return 0;}\n"

resolve bigmap (m, s) = either (resolve bigmap) id $ (bigmap ! m) ! s

mayResolve bigmap (m, s) = mlookup m bigmap
  >>= fmap (either (resolve bigmap) id) . mlookup s

lambsList typed = toAscList $ snd <$> typed

codegenLocal (name, (typed, _)) (bigmap, (hp, f)) =
  (insert name localmap bigmap, (hp', f . memF))
  where
  (localmap, (hp', memF)) = asm hp $ optiComb $ lambsList typed

codegen mods = (bigmap, mem) where
  (bigmap, (_, memF)) = foldr codegenLocal (Tip, (128, id)) $ toAscList mods
  mem = either (resolve bigmap) id <$> memF []

getIOType (Qual [] (TAp (TC "IO") t)) = Right t
getIOType q = Left $ "main : " ++ shows q ""

ffcat (name, (_, (ffis, ffes))) (xs, ys) = (ffis ++ xs, ((name,) <$> ffes) ++ ys)

compile s = either id id do
  mods <- untangle s
  let
    (bigmap, mem) = codegen mods
    (ffis, ffes) = foldr ffcat ([], []) $ toAscList mods
    mustType modName s = case mlookup s (fst $ mods ! modName) of
      Just (Qual [] t, _) -> t
      _ -> error "TODO: report bad exports"
    mayMain = do
      mainAddr <- mayResolve bigmap ("Main", "main")
      (mainType, _) <- mlookup "main" (fst $ mods ! "Main")
      pure (mainAddr, mainType)
  mainStr <- case mayMain of
    Nothing -> pure ""
    Just (a, q) -> do
      getIOType q
      pure $ genMain a

  pure
    $ ("#include<stdio.h>\n"++)
    . ("typedef unsigned u;\n"++)
    . ("enum{_UNDEFINED=0,"++)
    . foldr (.) id (map (\(s, _) -> ('_':) . (s++) . (',':)) comdefs)
    . ("};\n"++)
    . ("static const u prog[]={" ++)
    . foldr (.) id (map (\n -> shows n . (',':)) mem)
    . ("};\nstatic const u prog_size="++) . shows (length mem) . (";\n"++)
    . ("static u root[]={" ++)
    . foldr (\(modName, (_, ourName)) f -> shows (resolve bigmap (modName, ourName)) . (", " ++) . f) id ffes
    . ("0};\n" ++)
    . (preamble++)
    . (libc++)
    . (concatMap ffiDeclare ffis ++)
    . ("static void foreign(u n) {\n  switch(n) {\n" ++)
    . ffiDefine (length ffis - 1) ffis
    . ("\n  }\n}\n" ++)
    . runFun
    . foldr (.) id (zipWith (\(modName, (expName, ourName))  n -> ("EXPORT(f"++) . shows n . (", \""++) . (expName++) . ("\")\n"++)
      . genExport (arrCount $ mustType modName ourName) n) ffes [0..])
    $ mainStr

genExport m n = ("void f"++) . shows n . ("("++)
  . foldr (.) id (intersperse (',':) $ map (("u "++) .) xs)
  . ("){rts_reduce("++)
  . foldl (\s x -> ("app("++) . s . (",app(_NUM,"++) . x . ("))"++)) rt xs
  . (");}\n"++)
  where
  xs = map ((('x':) .) . shows) [0..m - 1]
  rt = ("root["++) . shows n . ("]"++)

arrCount = \case
  TAp (TAp (TC "->") _) y -> 1 + arrCount y
  _ -> 0

-- Main VM loop.
comdefsrc = [r|
F x = "foreign(num(1));"
Y x = x "sp[1]"
Q x y z = z(y x)
S x y z = x z(y z)
B x y z = x (y z)
BK x y z = x y
C x y z = x z y
R x y z = y z x
V x y z = z x y
T x y = y x
K x y = "_I" x
KI x y = "_I" y
I x = "sp[1] = arg(1); sp++;"
LEFT x y z = y x
CONS x y z w = w x y
NUM x y = y "sp[1]"
ADD x y = "_NUM" "num(1) + num(2)"
SUB x y = "_NUM" "num(1) - num(2)"
MUL x y = "_NUM" "num(1) * num(2)"
DIV x y = "_NUM" "num(1) / num(2)"
MOD x y = "_NUM" "num(1) % num(2)"
EQ x y = "num(1) == num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
LE x y = "num(1) <= num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
REF x y = y "sp[1]"
NEWREF x y z = z ("_REF" x) y
READREF x y z = z "num(1)" y
WRITEREF x y z w = w "((mem[arg(2) + 1] = arg(1)), _K)" z
END = "return;"
ERR = "sp[1]=app(app(arg(1),_ERREND),_ERR2);sp++;"
ERR2 = "lazy3(2, arg(1), _ERROUT, arg(2));"
ERROUT = "errchar(num(1)); lazy2(2, _ERR, arg(2));"
ERREND = "errexit(); return;"
|]
comb = (,) <$> conId <*> ((,) <$> many varId <*> (res "=" *> combExpr))
combExpr = foldl1 A <$> some
  (V <$> varId <|> E . StrCon <$> lexeme tokStr <|> paren combExpr)
comdefs = case parse (lexemePrelude *> braceSep comb <* eof) comdefsrc of
  Left e -> error e
  Right (cs, _) -> cs
comEnum s = maybe (error s) id $ lookup s $ zip (fst <$> comdefs) [1..]
comName i = maybe undefined id $ lookup i $ zip [1..] (fst <$> comdefs)

preamble = [r|#define EXPORT(f, sym, n) void f() asm(sym) __attribute__((export_name(sym))); void f(){rts_reduce(root[n]);}
void *malloc(unsigned long);
enum { FORWARD = 127, REDUCING = 126 };
enum { TOP = 1<<24 };
static u *mem, *altmem, *sp, *spTop, hp;
static inline u isAddr(u n) { return n>=128; }
static u evac(u n) {
  if (!isAddr(n)) return n;
  u x = mem[n];
  while (isAddr(x) && mem[x] == _T) {
    mem[n] = mem[n + 1];
    mem[n + 1] = mem[x + 1];
    x = mem[n];
  }
  if (isAddr(x) && mem[x] == _K) {
    mem[n + 1] = mem[x + 1];
    x = mem[n] = _I;
  }
  u y = mem[n + 1];
  switch(x) {
    case FORWARD: return y;
    case REDUCING:
      mem[n] = FORWARD;
      mem[n + 1] = hp;
      hp += 2;
      return mem[n + 1];
    case _I:
      mem[n] = REDUCING;
      y = evac(y);
      if (mem[n] == FORWARD) {
        altmem[mem[n + 1]] = _I;
        altmem[mem[n + 1] + 1] = y;
      } else {
        mem[n] = FORWARD;
        mem[n + 1] = y;
      }
      return mem[n + 1];
    default: break;
  }
  u z = hp;
  hp += 2;
  mem[n] = FORWARD;
  mem[n + 1] = z;
  altmem[z] = x;
  altmem[z + 1] = y;
  return z;
}

static void gc() {
  hp = 128;
  u di = hp;
  sp = altmem + TOP - 1;
  for(u *r = root; *r; r++) *r = evac(*r);
  *sp = evac(*spTop);
  while (di < hp) {
    u x = altmem[di] = evac(altmem[di]);
    di++;
    if (x != _NUM) altmem[di] = evac(altmem[di]);
    di++;
  }
  spTop = sp;
  u *tmp = mem;
  mem = altmem;
  altmem = tmp;
}

static inline u app(u f, u x) { mem[hp] = f; mem[hp + 1] = x; return (hp += 2) - 2; }
static inline u arg(u n) { return mem[sp [n] + 1]; }
static inline int num(u n) { return mem[arg(n) + 1]; }
static inline void lazy2(u height, u f, u x) {
  u *p = mem + sp[height];
  *p = f;
  *++p = x;
  sp += height - 1;
  *sp = f;
}
static void lazy3(u height,u x1,u x2,u x3){u*p=mem+sp[height];sp[height-1]=*p=app(x1,x2);*++p=x3;*(sp+=height-2)=x1;}
|]

runFun = ([r|static void run() {
  for(;;) {
    if (mem + hp > sp - 8) gc();
    u x = *sp;
    if (isAddr(x)) *--sp = mem[x]; else switch(x) {
|]++)
  . foldr (.) id (genComb <$> comdefs)
  . ([r|
    }
  }
}

void rts_init() {
  mem = malloc(TOP * sizeof(u)); altmem = malloc(TOP * sizeof(u));
  hp = 128;
  for (u i = 0; i < prog_size; i++) mem[hp++] = prog[i];
  spTop = mem + TOP - 1;
}

void rts_reduce(u n) {
  static u ready;if (!ready){ready=1;rts_init();}
  *(sp = spTop) = app(app(n, _UNDEFINED), _END);
  run();
}
|]++)

genArg m a = case a of
  V s -> ("arg("++) . (maybe undefined shows $ lookup s m) . (')':)
  E (StrCon s) -> (s++)
  A x y -> ("app("++) . genArg m x . (',':) . genArg m y . (')':)
genArgs m as = foldl1 (.) $ map (\a -> (","++) . genArg m a) as
genComb (s, (args, body)) = let
  argc = ('(':) . shows (length args)
  m = zip args [1..]
  in ("case _"++) . (s++) . (':':) . (case body of
    A (A x y) z -> ("lazy3"++) . argc . genArgs m [x, y, z] . (");"++)
    A x y -> ("lazy2"++) . argc . genArgs m [x, y] . (");"++)
    E (StrCon s) -> (s++)
  ) . ("break;\n"++)

main = getArgs >>= \case
  "comb":_ -> interact $ dumpWith dumpCombs
  "lamb":_ -> interact $ dumpWith dumpLambs
  "type":_ -> interact $ dumpWith dumpTypes
  _ -> interact compile

iterate f x = x : iterate f (f x)
takeWhile _ [] = []
takeWhile p xs@(x:xt)
  | p x  = x : takeWhile p xt
  | True = []

class Enum a where
  succ           :: a -> a
  pred           :: a -> a
  toEnum         :: Int -> a
  fromEnum       :: a -> Int
  enumFrom       :: a -> [a]
  enumFromTo     :: a -> a -> [a]
instance Enum Int where
  succ = (+1)
  pred = (+(0-1))
  toEnum = id
  fromEnum = id
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo
instance Enum Char where
  succ = chr . (+1) . ord
  pred = chr . (+(0-1)) . ord
  toEnum = chr
  fromEnum = ord
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo

(+) = intAdd
(-) = intSub
(*) = intMul
div = intDiv
mod = intMod

Multiparty

We put our changes to the test by splitting party.hs into modules. (We really should do the same for our "marginally" compiler, namely create an intermediate stage that is exactly the same except we use indentation instead of braces and semicolons. This would make it easier to compare against its successor "methodically".)

cat Base0.hs Ast.hs Map.hs Parser.hs Kiselyov.hs Unify.hs RTS.hs Typer.hs party.hs
module Base where

infixr 9 .
infixl 7 * , `div` , `mod`
infixl 6 + , -
infixr 5 ++
infixl 4 <*> , <$> , <* , *>
infix 4 == , /= , <=
infixl 3 && , <|>
infixl 2 ||
infixl 1 >> , >>=
infixr 0 $

class Functor f where fmap :: (a -> b) -> f a -> f b
class Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
(<$>) = fmap
liftA2 f x y = f <$> x <*> y
(>>) f g = f >>= \_ -> g
class Eq a where (==) :: a -> a -> Bool
instance Eq Int where (==) = intEq
instance Eq Char where (==) = charEq
($) f x = f x
id x = x
const x y = x
flip f x y = f y x
(&) x f = f x
class Ord a where (<=) :: a -> a -> Bool
compare x y = if x <= y then if y <= x then EQ else LT else GT
instance Ord Int where (<=) = intLE
instance Ord Char where (<=) = charLE
data Ordering = LT | GT | EQ
instance Ord a => Ord [a] where
  xs <= ys = case xs of
    [] -> True
    x:xt -> case ys of
      [] -> False
      y:yt -> if x <= y then if y <= x then xt <= yt else True else False
  compare xs ys = case xs of
    [] -> case ys of
      [] -> EQ
      _ -> LT
    x:xt -> case ys of
      [] -> GT
      y:yt -> if x <= y then if y <= x then compare xt yt else LT else GT
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
fst (x, y) = x
snd (x, y) = y
uncurry f (x, y) = f x y
first f (x, y) = (f x, y)
second f (x, y) = (x, f y)
not a = if a then False else True
x /= y = not $ x == y
(.) f g x = f (g x)
(||) f g = if f then True else g
(&&) f g = if f then g else False
instance Eq a => Eq [a] where
  xs == ys = case xs of
    [] -> case ys of
      [] -> True
      _ -> False
    x:xt -> case ys of
      [] -> False
      y:yt -> x == y && xt == yt
take 0 xs = []
take _ [] = []
take n (h:t) = h : take (n - 1) t
maybe n j m = case m of Nothing -> n; Just x -> j x
instance Functor Maybe where fmap f = maybe Nothing (Just . f)
instance Applicative Maybe where pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf
instance Monad Maybe where return = Just ; mf >>= mg = maybe Nothing mg mf
instance Alternative Maybe where empty = Nothing ; x <|> y = maybe y Just x
foldr c n = \case [] -> n; h:t -> c h $ foldr c n t
length = foldr (\_ n -> n + 1) 0
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure [])
mapM_ f = foldr ((>>) . f) (pure ())
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0
error = primitiveError
undefined = error "undefined"
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a
foldl1 f (h:t) = foldl f h t
elem k xs = foldr (\x t -> x == k || t) False xs
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs
(++) = flip (foldr (:))
concat = foldr (++) []
map = flip (foldr . ((:) .)) []
head (h:_) = h
tail (_:t) = t
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13, 160]
instance Functor [] where fmap = map
instance Applicative [] where pure = (:[]); f <*> x = concatMap (<$> x) f
instance Monad [] where return = (:[]); (>>=) = flip concatMap
concatMap = (concat .) . map
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing
filter f = foldr (\x xs -> if f x then x:xs else xs) []
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys
intersect xs ys = filter (\x -> maybe False (\_ -> True) $ find (x ==) ys) xs
last (x:xt) = go x xt where go x xt = case xt of [] -> x; y:yt -> go y yt
init (x:xt) = case xt of [] -> []; _ -> x : init xt
intercalate sep = \case [] -> []; x:xt -> x ++ concatMap (sep ++) xt
intersperse sep = \case [] -> []; x:xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt)
all f = foldr (&&) True . map f
any f = foldr (||) False . map f
and = foldr (&&) True
or = foldr (||) False
zipWith f xs ys = case xs of [] -> []; x:xt -> case ys of [] -> []; y:yt -> f x y : zipWith f xt yt
zip = zipWith (,)
data State s a = State (s -> (a, s))
runState (State f) = f
instance Functor (State s) where fmap f = \(State h) -> State (first f . h)
instance Applicative (State s) where
  pure a = State (a,)
  (State f) <*> (State x) = State \s -> case f s of (g, s') -> first g $ x s'
instance Monad (State s) where
  return a = State (a,)
  (State h) >>= f = State $ uncurry (runState . f) . h
evalState m s = fst $ runState m s
get = State \s -> (s, s)
put n = State \s -> ((), n)
either l r e = case e of Left x -> l x; Right x -> r x
instance Functor (Either a) where fmap f e = either Left (Right . f) e
instance Applicative (Either a) where
  pure = Right
  ef <*> ex = case ef of
    Left s -> Left s
    Right f -> either Left (Right . f) ex
instance Monad (Either a) where
  return = Right
  ex >>= f = either Left f ex
class Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a
asum = foldr (<|>) empty
(*>) = liftA2 \x y -> y
(<*) = liftA2 \x y -> x
many p = liftA2 (:) p (many p) <|> pure []
some p = liftA2 (:) p (many p)
sepBy1 p sep = liftA2 (:) p (many (sep *> p))
sepBy p sep = sepBy1 p sep <|> pure []
between x y p = x *> (p <* y)

showParen b f = if b then ('(':) . f . (')':) else f

iterate f x = x : iterate f (f x)
takeWhile _ [] = []
takeWhile p xs@(x:xt)
  | p x  = x : takeWhile p xt
  | True = []

class Enum a where
  succ           :: a -> a
  pred           :: a -> a
  toEnum         :: Int -> a
  fromEnum       :: a -> Int
  enumFrom       :: a -> [a]
  enumFromTo     :: a -> a -> [a]
instance Enum Int where
  succ = (+1)
  pred = (+(0-1))
  toEnum = id
  fromEnum = id
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo
instance Enum Char where
  succ = chr . (+1) . ord
  pred = chr . (+(0-1)) . ord
  toEnum = chr
  fromEnum = ord
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo

(+) = intAdd
(-) = intSub
(*) = intMul
div = intDiv
mod = intMod

instance (Eq a, Eq b) => Eq (a, b) where
  (a1, b1) == (a2, b2) = a1 == a2 && b1 == b2
instance (Ord a, Ord b) => Ord (a, b) where
  (a1, b1) <= (a2, b2) = a1 <= a2 && (not (a2 <= a1) || b1 <= b2)

null xs = case xs of
  [] -> True
  _ -> False

instance Applicative IO where pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y)
instance Monad IO where return = ioPure ; (>>=) = ioBind
instance Functor IO where fmap f x = ioPure f <*> x
class Show a where
  showsPrec :: Int -> a -> String -> String
  showsPrec _ x = (show x++)
  show :: a -> String
  show x = shows x ""
  showList :: [a] -> String -> String
  showList = showList__ shows
shows = showsPrec 0
showList__ _     []     s = "[]" ++ s
showList__ showx (x:xs) s = '[' : showx x (showl xs)
  where
    showl []     = ']' : s
    showl (y:ys) = ',' : showx y (showl ys)
showInt__ n
  | 0 == n = id
  | True = showInt__ (n`div`10) . (chr (48+n`mod`10):)
instance Show () where show () = "()"
instance Show Bool where
  show True = "True"
  show False = "False"
instance Show a => Show [a] where showsPrec _ = showList
instance Show Int where
  showsPrec _ n
    | 0 == n = ('0':)
    | 1 <= n = showInt__ n
    | 2 * n == 0 = ("-2147483648"++)
    | True = ('-':) . showInt__ (0 - n)
showLitChar__ '\n' = ("\\n"++)
showLitChar__ '\\' = ("\\\\"++)
showLitChar__ c = (c:)
instance Show Char where
  showsPrec _ '\'' = ("'\\''"++)
  showsPrec _ c = ('\'':) . showLitChar__ c . ('\'':)
  showList s = ('"':) . foldr (.) id (map go s) . ('"':) where
    go '"' = ("\\\""++)
    go c = showLitChar__ c
instance (Show a, Show b) => Show (a, b) where
  showsPrec _ (a, b) = showParen True $ shows a . (',':) . shows b
module Map where

import Base

infixl 9 !

data Map k a = Tip | Bin Int k a (Map k a) (Map k a)
instance Functor (Map k) where
  fmap f m = case m of
    Tip -> Tip
    Bin sz k x l r -> Bin sz k (f x) (fmap f l) (fmap f r)
size m = case m of Tip -> 0 ; Bin sz _ _ _ _ -> sz
node k x l r = Bin (1 + size l + size r) k x l r
singleton k x = Bin 1 k x Tip Tip
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
  node rlk rlkx (node k x l rll) (node rk rkx rlr rr)
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r)
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
  node lrk lrkx (node lk lkx ll lrl) (node k x lrr r)
balance k x l r = f k x l r where
  f | size l + size r <= 1 = node
    | 5 * size l + 3 <= 2 * size r = case r of
      Tip -> node
      Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
        then singleL
        else doubleL
    | 5 * size r + 3 <= 2 * size l = case l of
      Tip -> node
      Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
        then singleR
        else doubleR
    | True = node
insert kx x t = case t of
  Tip -> singleton kx x
  Bin sz ky y l r -> case compare kx ky of
    LT -> balance ky y (insert kx x l) r
    GT -> balance ky y l (insert kx x r)
    EQ -> Bin sz kx x l r
insertWith f kx x t = case t of
  Tip -> singleton kx x
  Bin sy ky y l r -> case compare kx ky of
    LT -> balance ky y (insertWith f kx x l) r
    GT -> balance ky y l (insertWith f kx x r)
    EQ -> Bin sy kx (f x y) l r
mlookup kx t = case t of
  Tip -> Nothing
  Bin _ ky y l r -> case compare kx ky of
    LT -> mlookup kx l
    GT -> mlookup kx r
    EQ -> Just y
fromList = foldl (\t (k, x) -> insert k x t) Tip
member k t = maybe False (const True) $ mlookup k t
t ! k = maybe undefined id $ mlookup k t
foldrWithKey f = go where
  go z t = case t of
    Tip -> z
    Bin _ kx x l r -> go (f kx x (go z r)) l
mapWithKey _ Tip = Tip
mapWithKey f (Bin sx kx x l r) =
  Bin sx kx (f kx x) (mapWithKey f l) (mapWithKey f r)
toAscList = foldrWithKey (\k x xs -> (k,x):xs) []
keys = map fst . toAscList
elems = map snd . toAscList
assocs = toAscList
-- Add `Show` instance.
module Kiselyov where
import Base
import Ast

-- Conversion to De Bruijn indices.
data LC = Ze | Su LC | Pass IntTree | La LC | App LC LC

debruijn n e = case e of
  E x -> Pass $ Lf x
  V v -> maybe (Pass $ LfVar v) id $
    foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
  A x y -> App (debruijn n x) (debruijn n y)
  L s t -> La (debruijn (s:n) t)

-- Kiselyov bracket abstraction.
data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem

instance Show IntTree where
  showsPrec prec = \case
    LfVar s -> showVar s
    Lf extra -> shows extra
    Nd x y -> showParen (1 <= prec) $ showsPrec 0 x . (' ':) . showsPrec 1 y

lf = Lf . Basic

x ## y = case x of
  Defer -> case y of
    Defer -> Need $ Closed (Nd (Nd (lf "S") (lf "I")) (lf "I"))
    Closed d -> Need $ Closed (Nd (lf "T") d)
    Need e -> Need $ Closed (Nd (lf "S") (lf "I")) ## e
    Weak e -> Need $ Closed (lf "T") ## e
  Closed d -> case y of
    Defer -> Need $ Closed d
    Closed dd -> Closed $ Nd d dd
    Need e -> Need $ Closed (Nd (lf "B") d) ## e
    Weak e -> Weak $ Closed d ## e
  Need e -> case y of
    Defer -> Need $ Closed (lf "S") ## e ## Closed (lf "I")
    Closed d -> Need $ Closed (Nd (lf "R") d) ## e
    Need ee -> Need $ Closed (lf "S") ## e ## ee
    Weak ee -> Need $ Closed (lf "C") ## e ## ee
  Weak e -> case y of
    Defer -> Need e
    Closed d -> Weak $ e ## Closed d
    Need ee -> Need $ Closed (lf "B") ## e ## ee
    Weak ee -> Weak $ e ## ee

babs t = case t of
  Ze -> Defer
  Su x -> Weak $ babs x
  Pass x -> Closed x
  La t -> case babs t of
    Defer -> Closed $ lf "I"
    Closed d -> Closed $ Nd (lf "K") d
    Need e -> e
    Weak e -> Closed (lf "K") ## e
  App x y -> babs x ## babs y

nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x

-- Optimizations.
optim t = case t of
  Nd x y -> go (optim x) (optim y)
  _ -> t
  where
  go (Lf (Basic "I")) q = q
  go p q@(Lf (Basic c)) = case c of
    "K" -> case p of
      Lf (Basic "B") -> lf "BK"
      _ -> Nd p q
    "I" -> case p of
      Lf (Basic r) -> case r of
        "C" -> lf "T"
        "B" -> lf "I"
        "K" -> lf "KI"
        _ -> Nd p q
      Nd p1 p2 -> case p1 of
        Lf (Basic "B") -> p2
        Lf (Basic "R") -> Nd (lf "T") p2
        _ -> Nd (Nd p1 p2) q
      _ -> Nd p q
    "T" -> case p of
      Nd (Lf (Basic "B")) (Lf (Basic r)) -> case r of
        "C" -> lf "V"
        "BK" -> lf "LEFT"
        _ -> Nd p q
      _ -> Nd p q
    "V" -> case p of
      Nd (Lf (Basic "B")) (Lf (Basic "BK")) -> lf "CONS"
      _ -> Nd p q
    _ -> Nd p q
  go p q = Nd p q

(There are more files, which I’ll include if I get around to writing a tool to help show several source files in HTML. For now, see the git repo.)

GHC compatibility

The main obstacle to compiling our modules with GHC is the Prelude. We define entities such as Monad and (==) from scratch, which breaks do notation for example because GHC always uses Prelude.Monad.

We remove this obstacle by simply removing any overlap with the Prelude. We use a stripped-down Base.hs when testing with GHC, whereas our compilers really use files like Base0.hs.

This implies much of our Base code is untested, but for this special case, perhaps we can add a wrapper to test it on its own with GHC.

-- GHC-compatible version.
module Base where
import qualified Data.Char (chr, ord, isSpace)
hide_prelude_here = hide_prelude_here

chr = Data.Char.chr
ord = Data.Char.ord
isSpace = Data.Char.isSpace

first f (x, y) = (f x, y)
second f (x, y) = (x, f y)

infixl 3 <|>
instance Alternative Maybe where empty = Nothing ; x <|> y = maybe y Just x
class Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a

(&) x f = f x
liftA2 f x y = f <$> x <*> y
many p = liftA2 (:) p (many p) <|> pure []
some p = liftA2 (:) p (many p)
sepBy1 p sep = liftA2 (:) p (many (sep *> p))
sepBy p sep = sepBy1 p sep <|> pure []
between x y p = x *> (p <* y)
asum = foldr (<|>) empty
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs
intersect xs ys = filter (\x -> maybe False (\_ -> True) $ find (x ==) ys) xs
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys
intercalate sep = \case [] -> []; x:xt -> x ++ concatMap (sep ++) xt
intersperse sep = \case [] -> []; x:xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt)
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0

data State s a = State (s -> (a, s))
runState (State f) = f
instance Functor (State s) where fmap f = \(State h) -> State (first f . h)
instance Applicative (State s) where
  pure a = State (a,)
  (State f) <*> (State x) = State \s -> case f s of (g, s') -> first g $ x s'
instance Monad (State s) where
  return a = State (a,)
  (State h) >>= f = State $ uncurry (runState . f) . h
evalState m s = fst $ runState m s
get = State \s -> (s, s)
put n = State \s -> ((), n)

integerSignList x f = f (x >= 0) $ go x where
  go 0 = []
  go n = r : go q where (q, r) = divMod n $ 2^32

intFromWord = fromIntegral

when x y = if x then y else pure ()
unless x y = if x then pure () else y

Another obstacle is our built-in support for quasi-quoted raw strings. We solve this by adding the line:

import_qq_here = import_qq_here

immediately after the import statements. Then we enable the C pre-processor and define import_qq_here to be import Text.RawString.QQ --.

We perform similar tricks to hide Prelude symbols we define in the System module.

module RTS where

import Base
import Ast
import Kiselyov
import Map
import Parser

import_qq_here = import_qq_here

libc = [r|#include<stdio.h>
static int env_argc;
int getargcount() { return env_argc; }
static char **env_argv;
int getargchar(int n, int k) { return env_argv[n][k]; }
static int nextCh, isAhead;
int eof_shim() {
  if (!isAhead) {
    isAhead = 1;
    nextCh = getchar();
  }
  return nextCh == -1;
}
void exit(int);
void putchar_shim(int c) { putchar(c); }
int getchar_shim() {
  if (!isAhead) nextCh = getchar();
  if (nextCh == -1) exit(1);
  isAhead = 0;
  return nextCh;
}
void errchar(int c) { fputc(c, stderr); }
void errexit() { fputc('\n', stderr); }
|]

preamble = [r|#define EXPORT(f, sym, n) void f() asm(sym) __attribute__((export_name(sym))); void f(){rts_reduce(root[n]);}
void *malloc(unsigned long);
enum { FORWARD = 127, REDUCING = 126 };
enum { TOP = 1<<24 };
static u *mem, *altmem, *sp, *spTop, hp;
static inline u isAddr(u n) { return n>=128; }
static u evac(u n) {
  if (!isAddr(n)) return n;
  u x = mem[n];
  while (isAddr(x) && mem[x] == _T) {
    mem[n] = mem[n + 1];
    mem[n + 1] = mem[x + 1];
    x = mem[n];
  }
  if (isAddr(x) && mem[x] == _K) {
    mem[n + 1] = mem[x + 1];
    x = mem[n] = _I;
  }
  u y = mem[n + 1];
  switch(x) {
    case FORWARD: return y;
    case REDUCING:
      mem[n] = FORWARD;
      mem[n + 1] = hp;
      hp += 2;
      return mem[n + 1];
    case _I:
      mem[n] = REDUCING;
      y = evac(y);
      if (mem[n] == FORWARD) {
        altmem[mem[n + 1]] = _I;
        altmem[mem[n + 1] + 1] = y;
      } else {
        mem[n] = FORWARD;
        mem[n + 1] = y;
      }
      return mem[n + 1];
    default: break;
  }
  u z = hp;
  hp += 2;
  mem[n] = FORWARD;
  mem[n + 1] = z;
  altmem[z] = x;
  altmem[z + 1] = y;
  return z;
}

static void gc() {
  hp = 128;
  u di = hp;
  sp = altmem + TOP - 1;
  for(u *r = root; *r; r++) *r = evac(*r);
  *sp = evac(*spTop);
  while (di < hp) {
    u x = altmem[di] = evac(altmem[di]);
    di++;
    if (x != _NUM) altmem[di] = evac(altmem[di]);
    di++;
  }
  spTop = sp;
  u *tmp = mem;
  mem = altmem;
  altmem = tmp;
}

static inline u app(u f, u x) { mem[hp] = f; mem[hp + 1] = x; return (hp += 2) - 2; }
static inline u arg(u n) { return mem[sp [n] + 1]; }
static inline int num(u n) { return mem[arg(n) + 1]; }
static inline void lazy2(u height, u f, u x) {
  u *p = mem + sp[height];
  *p = f;
  *++p = x;
  sp += height - 1;
  *sp = f;
}
static void lazy3(u height,u x1,u x2,u x3){u*p=mem+sp[height];sp[height-1]=*p=app(x1,x2);*++p=x3;*(sp+=height-2)=x1;}
|]

-- Main VM loop.
comdefsrc = [r|
F x = "foreign(num(1));"
Y x = x "sp[1]"
Q x y z = z(y x)
S x y z = x z(y z)
B x y z = x (y z)
BK x y z = x y
C x y z = x z y
R x y z = y z x
V x y z = z x y
T x y = y x
K x y = "_I" x
KI x y = "_I" y
I x = "sp[1] = arg(1); sp++;"
LEFT x y z = y x
CONS x y z w = w x y
NUM x y = y "sp[1]"
ADD x y = "_NUM" "num(1) + num(2)"
SUB x y = "_NUM" "num(1) - num(2)"
MUL x y = "_NUM" "num(1) * num(2)"
DIV x y = "_NUM" "num(1) / num(2)"
MOD x y = "_NUM" "num(1) % num(2)"
EQ x y = "num(1) == num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
LE x y = "num(1) <= num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
REF x y = y "sp[1]"
NEWREF x y z = z ("_REF" x) y
READREF x y z = z "num(1)" y
WRITEREF x y z w = w "((mem[arg(2) + 1] = arg(1)), _K)" z
END = "return;"
ERR = "sp[1]=app(app(arg(1),_ERREND),_ERR2);sp++;"
ERR2 = "lazy3(2, arg(1), _ERROUT, arg(2));"
ERROUT = "errchar(num(1)); lazy2(2, _ERR, arg(2));"
ERREND = "errexit(); return;"
|]

argList t = case t of
  TC s -> [TC s]
  TV s -> [TV s]
  TAp (TC "IO") (TC u) -> [TC u]
  TAp (TAp (TC "->") x) y -> x : argList y

cTypeName (TC "()") = "void"
cTypeName (TC "Int") = "int"
cTypeName (TC "Char") = "int"

ffiDeclare (name, t) = let tys = argList t in concat
  [cTypeName $ last tys, " ", name, "(", intercalate "," $ cTypeName <$> init tys, ");\n"]

ffiArgs n t = case t of
  TC s -> ("", ((True, s), n))
  TAp (TC "IO") (TC u) -> ("", ((False, u), n))
  TAp (TAp (TC "->") x) y -> first (((if 3 <= n then ", " else "") ++ "num(" ++ shows n ")") ++) $ ffiArgs (n + 1) y

ffiDefine n ffis = case ffis of
  [] -> id
  (name, t):xt -> let
    (args, ((isPure, ret), count)) = ffiArgs 2 t
    lazyn = ("lazy2(" ++) . shows (if isPure then count - 1 else count + 1) . (", " ++)
    cont tgt = if isPure then ("_I, "++) . tgt else ("app(arg("++) . shows (count + 1) . ("), "++) . tgt . ("), arg("++) . shows count . (")"++)
    longDistanceCall = (name++) . ("("++) . (args++) . ("); "++) . lazyn
    in ("case " ++) . shows n . (": " ++) . if ret == "()"
      then longDistanceCall . cont ("_K"++) . ("); break;"++) . ffiDefine (n - 1) xt
      else ("{u r = "++) . longDistanceCall . cont ("app(_NUM, r)" ++) . ("); break;}\n"++) . ffiDefine (n - 1) xt

genMain n = "int main(int argc,char**argv){env_argc=argc;env_argv=argv;rts_reduce(" ++ shows n ");return 0;}\n"

arrCount = \case
  TAp (TAp (TC "->") _) y -> 1 + arrCount y
  _ -> 0

genExport m n = ("void f"++) . shows n . ("("++)
  . foldr (.) id (intersperse (',':) $ map (("u "++) .) xs)
  . ("){rts_reduce("++)
  . foldl (\s x -> ("app("++) . s . (",app(_NUM,"++) . x . ("))"++)) rt xs
  . (");}\n"++)
  where
  xs = map ((('x':) .) . shows) [0..m - 1]
  rt = ("root["++) . shows n . ("]"++)

genArg m a = case a of
  V s -> ("arg("++) . (maybe undefined shows $ lookup s m) . (')':)
  E (StrCon s) -> (s++)
  A x y -> ("app("++) . genArg m x . (',':) . genArg m y . (')':)
genArgs m as = foldl1 (.) $ map (\a -> (","++) . genArg m a) as
genComb (s, (args, body)) = let
  argc = ('(':) . shows (length args)
  m = zip args [1..]
  in ("case _"++) . (s++) . (':':) . (case body of
    A (A x y) z -> ("lazy3"++) . argc . genArgs m [x, y, z] . (");"++)
    A x y -> ("lazy2"++) . argc . genArgs m [x, y] . (");"++)
    E (StrCon s) -> (s++)
  ) . ("break;\n"++)

comb = (,) <$> conId <*> ((,) <$> many varId <*> (res "=" *> combExpr))
combExpr = foldl1 A <$> some
  (V <$> varId <|> E . StrCon <$> lexeme tokStr <|> paren combExpr)
comdefs = case parse (lexemePrelude *> braceSep comb <* eof) comdefsrc of
  Left e -> error e
  Right (cs, _) -> cs
comEnum s = maybe (error s) id $ lookup s $ zip (fst <$> comdefs) [1..]
comName i = maybe undefined id $ lookup i $ zip [1..] (fst <$> comdefs)

runFun = ([r|static void run() {
  for(;;) {
    if (mem + hp > sp - 8) gc();
    u x = *sp;
    if (isAddr(x)) *--sp = mem[x]; else switch(x) {
|]++)
  . foldr (.) id (genComb <$> comdefs)
  . ([r|
    }
  }
}

void rts_init() {
  mem = malloc(TOP * sizeof(u)); altmem = malloc(TOP * sizeof(u));
  hp = 128;
  for (u i = 0; i < sizeof(prog)/sizeof(*prog); i++) mem[hp++] = prog[i];
  spTop = mem + TOP - 1;
}

void rts_reduce(u n) {
  static u ready;if (!ready){ready=1;rts_init();}
  *(sp = spTop) = app(app(n, _UNDEFINED), _END);
  run();
}
|]++)

resolve bigmap (m, s) = either (resolve bigmap) id $ (bigmap ! m) ! s

mayResolve bigmap (m, s) = mlookup m bigmap
  >>= fmap (either (resolve bigmap) id) . mlookup s

appCell (hp, bs) x y = (Right hp, (hp + 2, bs . (x:) . (y:)))

enc tab mem = \case
  Lf n -> case n of
    Basic c -> (Right $ comEnum c, mem)
    Const c -> appCell mem (Right $ comEnum "NUM") $ Right c
    ChrCon c -> appCell mem (Right $ comEnum "NUM") $ Right $ ord c
    StrCon s -> enc tab mem $ foldr (\h t -> Nd (Nd (lf "CONS") (Lf $ ChrCon h)) t) (lf "K") s
    Link m s _ -> (Left (m, s), mem)
  LfVar s -> maybe (error $ "resolve " ++ s) (, mem) $ mlookup s tab
  Nd x y -> let
    (xAddr, mem') = enc tab mem x
    (yAddr, mem'') = enc tab mem' y
    in appCell mem'' xAddr yAddr

asm hp0 combs = tabmem where
  tabmem = foldl (\(as, m) (s, t) -> let (p, m') = enc (fst tabmem) m t
    in (insert s p as, m')) (Tip, (hp0, id)) combs

optiComb' (subs, combs) (s, lamb) = let
  gosub t = case t of
    LfVar v -> maybe t id $ lookup v subs
    Nd a b -> Nd (gosub a) (gosub b)
    _ -> t
  c = optim $ gosub $ nolam lamb
  combs' = combs . ((s, c):)
  in case c of
    Lf (Basic _) -> ((s, c):subs, combs')
    LfVar v -> if v == s then (subs, combs . ((s, Nd (lf "Y") (lf "I")):)) else ((s, gosub c):subs, combs')
    _ -> (subs, combs')
optiComb lambs = ($[]) . snd $ foldl optiComb' ([], id) lambs

lambsList typed = toAscList $ snd <$> typed

codegenLocal (name, (typed, _)) (bigmap, (hp, f)) =
  (insert name localmap bigmap, (hp', f . memF))
  where
  (localmap, (hp', memF)) = asm hp $ optiComb $ lambsList typed

codegen mods = (bigmap, mem) where
  (bigmap, (_, memF)) = foldr codegenLocal (Tip, (128, id)) $ toAscList mods
  mem = either (resolve bigmap) id <$> memF []

getIOType (Qual [] (TAp (TC "IO") t)) = Right t
getIOType q = Left $ "main : " ++ shows q ""

ffcat (name, (_, (ffis, ffes))) (xs, ys) = (ffis ++ xs, ((name,) <$> ffes) ++ ys)

compile mods = do
  let
    (bigmap, mem) = codegen mods
    (ffis, ffes) = foldr ffcat ([], []) $ toAscList mods
    mustType modName s = case mlookup s (fst $ mods ! modName) of
      Just (Qual [] t, _) -> t
      _ -> error "TODO: report bad exports"
    mayMain = do
      mainAddr <- mayResolve bigmap ("Main", "main")
      (mainType, _) <- mlookup "main" $ fst $ mods ! "Main"
      pure (mainAddr, mainType)
  mainStr <- case mayMain of
    Nothing -> pure ""
    Just (a, q) -> do
      getIOType q
      pure $ genMain a

  pure
    $ ("typedef unsigned u;\n"++)
    . ("enum{_UNDEFINED=0,"++)
    . foldr (.) id (map (\(s, _) -> ('_':) . (s++) . (',':)) comdefs)
    . ("};\n"++)
    . ("static const u prog[]={" ++)
    . foldr (.) id (map (\n -> shows n . (',':)) mem)
    . ("};\nstatic u root[]={" ++)
    . foldr (\(modName, (_, ourName)) f -> shows (resolve bigmap (modName, ourName)) . (", " ++) . f) id ffes
    . ("0};\n" ++)
    . (preamble++)
    . (libc++)
    . (concatMap ffiDeclare ffis ++)
    . ("static void foreign(u n) {\n  switch(n) {\n" ++)
    . ffiDefine (length ffis - 1) ffis
    . ("\n  }\n}\n" ++)
    . runFun
    . foldr (.) id (zipWith (\(modName, (expName, ourName))  n -> ("EXPORT(f"++) . shows n . (", \""++) . (expName++) . ("\")\n"++)
      . genExport (arrCount $ mustType modName ourName) n) ffes [0..])
    $ mainStr

Our source now works with GHC with the following options:

:set "-Dhide_prelude_here=import Prelude hiding (getChar, putChar, getContents, putStr, putStrLn, interact) --"
:set "-Dimport_qq_here=import Text.RawString.QQ --"
:set -cpp -XQuasiQuotes
:set -XBlockArguments -XLambdaCase -XTupleSections
:set -XNoMonomorphismRestriction -XMonoLocalBinds

In the inn subdirectory:

$ ghci -ghci-script compat.ghci party.hs ../stub.o

Here, the stub.o has been created from stub.c with clang -c or similar.

We gave the nice filenames to GHC, which expects to find modules in files with matching names. Our compilers tolerate weird filename prefixes and suffixes because we can simply concatenate different files. An alternative is to manage different subdirectories containing the same filenames.

We can test later iterations with GHCi by symlinking appropriate versions of each file in a dedicated subdirectory.

Party1

Modules feel revolutionary. Our source becomes clearer, because modularization forces us to think about interdependencies, which guided refactoring so breaking up was less hard to do. And we can progress by making a small change to a small file, like our earliest compilers back in the day.

However, we face new challenges. Addressing the limitations listed above will require effort. Prepending a little wrapper no longer suffices for GHC interoperability. And how are we going to keep track of many versions of many files?

For now we answer the last question by tweaking an existing filename and Makefile rule. The module name remains the same but we concatenate a different file.

For mutual let definitions we wrote code that traversed a syntax tree to substitute certain variables. An alternative is to build a syntax tree that describes this substitution. After all, lambda calculus is substitution incarnate. In other words, we rely more on dynamic rather than static semantics, a distinction that sometimes blurs because beta-reducing may occur during optimization.

One advantage of this approach is we can remove overFreePro, a helper that traverses over syntax trees before case expressions and pattern matches have been transformed away.

We extend the parser to support named record fields in data type declarations such as:

data Foo = Foo { bar :: Int, baz :: String } | Qux

For accessors, we generate one function definition per field. For example:

bar = \case Foo bar baz -> bar

except at a lower level, exploiting our knowledge that our data types are Scott-encoded.

Record updates and initialization are more challenging. We need more than plain function definitions, and furthermore, we only have all valid field names after parsing. This means we ought to extend our syntax tree to hold lists of field bindings for record updates and initializations.

Instead of adding a new data constructor to our Ast type, we invent two basic combinators Basic "{=" and Basic "=}" which act as delimiters for a list of field bindings, where the A data constructor acts like a cons. An alternative is to use recursion schemes for our many variants of syntax trees.

By pattern compilation, we know all the field names, so at this point we call resolveFieldBinds to transform, say:

x { bar = 42 }

into:

case x of \Foo {orig}bar {orig}baz -> Foo 42 {orig}baz

though again using a lower level representation since we know we’re Scott-encoding the data types. The {orig} added by our code to each variable name guards against variable capture.

For record initializations, we only generate the right-hand side of the case match and use undefined for missing fields instead of {orig} variables.

We implement deriving for Eq and Show. It would be nice to automatically derive Eq for our primitive data types (unit, boolean, pairs, lists) but this would require all programs to define the Eq class.

Recall for data types, we maintain a map from a data constructor name to the list of all data constructors of the same type, along with the types of any field they may have. Even though we need to generate a unique and predictable symbol per type to represent corresponding case expressions, the function specialCase simply builds this symbol from the first data constructor.

We barely modify this map for named fields. As a result, there’s no easy way for findField to look up relevant information based on a field name. We inefficiently search linearly through possibly repeated entries. It may be better to add a separate map for named fields, but it’s tedious to add fields to the Neat type when our current compiler lacks support for naming them! Once again, a proto-chicken comes first.

To test with GHC, we create a new directory containing appropriately named symlinks to the desired versions of the modules. Incremental development means we only need to change a few symlinks at a time, but in the long run, we ought to automate symlinking from a given set of module files.

-- Record fields.
-- Remove `overFreePro`.
module Ast where
import Base
import Map

data Type = TC String | TV String | TAp Type Type
arr a b = TAp (TAp (TC "->") a) b
data Extra = Basic String | Const Int | ChrCon Char | StrCon String | Link String String Qual
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat]
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred
data Constr = Constr String [(String, Type)]
data Pred = Pred String Type
data Qual = Qual [Pred] Type

instance Eq Type where
  (TC s) == (TC t) = s == t
  (TV s) == (TV t) = s == t
  (TAp a b) == (TAp c d) = a == c && b == d
  _ == _ = False

instance Eq Pred where (Pred s a) == (Pred t b) = s == t && a == b

data Instance = Instance
  -- Type, e.g. Int for Eq Int.
  Type
  -- Dictionary name, e.g. "{Eq Int}"
  String
  -- Context.
  [Pred]
  -- Method definitions
  (Map String Ast)

data Tycl = Tycl [String] [Instance]

data Neat = Neat
  (Map String Tycl)
  -- | Top-level definitions
  [(String, Ast)]
  -- | Typed ASTs, ready for compilation, including ADTs and methods,
  -- e.g. (==), (Eq a => a -> a -> Bool, select-==)
  [(String, (Qual, Ast))]
  -- | Data constructor table.
  (Map String [Constr])
  -- | FFI declarations.
  [(String, Type)]
  -- | Exports.
  [(String, String)]
  -- | Module imports.
  [String]

patVars = \case
  PatLit _ -> []
  PatVar s m -> s : maybe [] patVars m
  PatCon _ args -> concat $ patVars <$> args

fvPro bound expr = case expr of
  V s | not (elem s bound) -> [s]
  A x y -> fvPro bound x `union` fvPro bound y
  L s t -> fvPro (s:bound) t
  Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
  _ -> []

beta s a t = case t of
  E _ -> t
  V v -> if s == v then a else t
  A x y -> A (beta s a x) (beta s a y)
  L v u -> if s == v then t else L v $ beta s a u

instance Show Type where
  showsPrec _ = \case
    TC s -> (s++)
    TV s -> (s++)
    TAp (TAp (TC "->") a) b -> showParen True $ shows a . (" -> "++) . shows b
    TAp a b -> showParen True $ shows a . (' ':) . shows b
instance Show Pred where
  showsPrec _ (Pred s t) = (s++) . (' ':) . shows t . (" => "++)
instance Show Qual where
  showsPrec _ (Qual ps t) = foldr (.) id (map shows ps) . shows t
instance Show Extra where
  showsPrec _ = \case
    Basic s -> (s++)
    Const i -> shows i
    ChrCon c -> shows c
    StrCon s -> shows s
    Link im s _ -> (im++) . ('.':) . (s++)
instance Show Pat where
  showsPrec _ = \case
    PatLit e -> shows e
    PatVar s mp -> (s++) . maybe id ((('@':) .) . shows) mp
    PatCon s ps -> (s++) . foldr (.) id (((' ':) .) . shows <$> ps)

showVar s@(h:_) = showParen (elem h ":!#$%&*+./<=>?@\\^|-~") (s++)

instance Show Ast where
  showsPrec prec = \case
    E e -> shows e
    V s -> showVar s
    A x y -> showParen (1 <= prec) $ shows x . (' ':) . showsPrec 1 y
    L s t -> showParen True $ ('\\':) . (s++) . (" -> "++) . shows t
    Pa vsts -> ('\\':) . showParen True (foldr (.) id $ intersperse (';':) $ map (\(vs, t) -> foldr (.) id (intersperse (' ':) $ map (showParen True . shows) vs) . (" -> "++) . shows t) vsts)
    Proof p -> ("{Proof "++) . shows p . ("}"++)

typedAsts (Neat _ _ tas _ _ _ _) = tas
typeclasses (Neat tcs _ _ _ _ _ _) = tcs
dataCons (Neat _ _ _ dcs _ _ _) = dcs

typeVars = \case
  TC _ -> []
  TV v -> [v]
  TAp x y -> typeVars x `union` typeVars y

depthFirstSearch = (foldl .) \relation st@(visited, sequence) vertex ->
  if vertex `elem` visited then st else second (vertex:)
    $ depthFirstSearch relation (vertex:visited, sequence) (relation vertex)

spanningSearch   = (foldl .) \relation st@(visited, setSequence) vertex ->
  if vertex `elem` visited then st else second ((:setSequence) . (vertex:))
    $ depthFirstSearch relation (vertex:visited, []) (relation vertex)

scc ins outs = spanning . depthFirst where
  depthFirst = snd . depthFirstSearch outs ([], [])
  spanning   = snd . spanningSearch   ins  ([], [])
-- Record fields.
-- Deriving `Eq`, `Show`.
module Parser where
import Base
import Ast
import Map

-- Parser.
data ParserState = ParserState
  [(Char, (Int, Int))]
  String
  [Int]
  (Map String (Int, Assoc))

readme  (ParserState x _ _ _) = x
landin  (ParserState _ x _ _) = x
indents (ParserState _ _ x _) = x
precs   (ParserState _ _ _ x) = x
putReadme  x (ParserState _ a b c) = ParserState x a b c
putLandin  x (ParserState a _ b c) = ParserState a x b c
modIndents f (ParserState a b x c) = ParserState a b (f x) c
data Parser a = Parser (ParserState -> Either String (a, ParserState))
getParser (Parser p) = p
instance Functor Parser where fmap f x = pure f <*> x
instance Applicative Parser where
  pure x = Parser \inp -> Right (x, inp)
  (Parser f) <*> (Parser x) = Parser \inp -> do
    (fun, t) <- f inp
    (arg, u) <- x t
    pure (fun arg, u)
instance Monad Parser where
  return = pure
  (Parser x) >>= f = Parser \inp -> do
    (a, t) <- x inp
    getParser (f a) t
instance Alternative Parser where
  empty = bad ""
  x <|> y = Parser \inp -> either (const $ getParser y inp) Right $ getParser x inp
getPrecs = Parser \st -> Right (precs st, st)
putPrecs ps = Parser \(ParserState a b c _) -> Right ((), ParserState a b c ps)

notFollowedBy p = do
  saved <- Parser \pasta -> Right (pasta, pasta)
  ret <- p *> pure (bad "") <|> pure (pure ())
  Parser \_ -> Right ((), saved)
  ret

parse f str = getParser f $ ParserState (rowcol str (1, 1)) [] [] $ singleton ":" (5, RAssoc) where
  rowcol s rc = case s of
    [] -> []
    h:t -> (h, rc) : rowcol t (advanceRC (ord h) rc)
  advanceRC n (r, c)
    | n `elem` [10, 11, 12, 13] = (r + 1, 1)
    | n == 9 = (r, (c + 8)`mod`8)
    | True = (r, c + 1)

indentOf pasta = case readme pasta of
  [] -> 1
  (_, (_, c)):_ -> c

ins c pasta = putLandin (c:landin pasta) pasta

angle n pasta = case indents pasta of
  m:ms | m == n -> ins ';' pasta
       | n + 1 <= m -> ins '}' $ angle n $ modIndents tail pasta
  _ -> pasta

curly n pasta = case indents pasta of
  m:ms | m + 1 <= n -> ins '{' $ modIndents (n:) pasta
  [] | 1 <= n -> ins '{' $ modIndents (n:) pasta
  _ -> ins '{' . ins '}' $ angle n pasta

sat f = Parser \pasta -> case landin pasta of
  c:t -> if f c then Right (c, putLandin t pasta) else Left "unsat"
  [] -> case readme pasta of
    [] -> case indents pasta of
      [] -> Left "EOF"
      m:ms | m /= 0 && f '}' -> Right ('}', modIndents tail pasta)
      _ -> Left "unsat"
    (h, _):t | f h -> let
      p' = putReadme t pasta
      in case h of
        '}' -> case indents pasta of
          0:ms -> Right (h, modIndents tail p')
          _ -> Left "unsat"
        '{' -> Right (h, modIndents (0:) p')
        _ -> Right (h, p')
    _ -> Left "unsat"

char c = sat (c ==)

rawSat f = Parser \pasta -> case readme pasta of
  [] -> Left "EOF"
  (h, _):t -> if f h then Right (h, putReadme t pasta) else Left "unsat"

eof = Parser \pasta -> case pasta of
  ParserState [] [] _ _ -> Right ((), pasta)
  _ -> badpos pasta "want eof"

comment = rawSat ('-' ==) *> some (rawSat ('-' ==)) *>
  (rawSat isNewline <|> rawSat (not . isSymbol) *> many (rawSat $ not . isNewline) *> rawSat isNewline) *> pure True
spaces = isNewline <$> rawSat isSpace
whitespace = do
  offside <- or <$> many (spaces <|> comment)
  Parser \pasta -> Right ((), if offside then angle (indentOf pasta) pasta else pasta)

hexValue d
  | d <= '9' = ord d - ord '0'
  | d <= 'F' = 10 + ord d - ord 'A'
  | d <= 'f' = 10 + ord d - ord 'a'
isNewline c = ord c `elem` [10, 11, 12, 13]
isSymbol = (`elem` "!#$%&*+./<=>?@\\^|-~:")
isSmall c = c <= 'z' && 'a' <= c || c == '_'
small = sat isSmall
large = sat \x -> (x <= 'Z') && ('A' <= x)
hexit = sat \x -> (x <= '9') && ('0' <= x)
  || (x <= 'F') && ('A' <= x)
  || (x <= 'f') && ('a' <= x)
digit = sat \x -> (x <= '9') && ('0' <= x)
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> some digit
hexadecimal = foldl (\n d -> 16*n + hexValue d) 0 <$> some hexit
nameTailChar = small <|> large <|> digit <|> char '\''
nameTailed p = liftA2 (:) p $ many nameTailChar

escape = char '\\' *> (sat (`elem` "'\"\\") <|> char 'n' *> pure '\n' <|> char '0' *> pure (chr 0) <|> char 'x' *> (chr <$> hexadecimal))
tokOne delim = escape <|> rawSat (delim /=)

charSeq = mapM char
tokChar = between (char '\'') (char '\'') (tokOne '\'')
quoteStr = between (char '"') (char '"') $ many $ many (charSeq "\\&") *> tokOne '"'
quasiquoteStr = charSeq "[r|" *> quasiquoteBody
quasiquoteBody = charSeq "|]" *> pure [] <|> (:) <$> rawSat (const True) <*> quasiquoteBody
tokStr = quoteStr <|> quasiquoteStr
integer = char '0' *> (char 'x' <|> char 'X') *> hexadecimal <|> decimal
literal = lexeme . fmap E $ Const <$> integer <|> ChrCon <$> tokChar <|> StrCon <$> tokStr
varish = lexeme $ nameTailed small
bad s = Parser \pasta -> badpos pasta s
badpos pasta s = Left $ loc $ ": " ++ s where
  loc = case readme pasta of
    [] -> ("EOF"++)
    (_, (r, c)):_ -> ("row "++) . shows r . (" col "++) . shows c
varId = do
  s <- varish
  if elem s
    ["export", "case", "class", "data", "default", "deriving", "do", "else", "foreign", "if", "import", "in", "infix", "infixl", "infixr", "instance", "let", "module", "newtype", "of", "then", "type", "where", "_"]
    then bad $ "reserved: " ++ s else pure s
varSymish = lexeme $ (:) <$> sat (\c -> isSymbol c && c /= ':') <*> many (sat isSymbol)
varSym = lexeme $ do
  s <- varSymish
  if elem s ["..", "=", "\\", "|", "<-", "->", "@", "~", "=>"] then bad $ "reserved: " ++ s else pure s

conId = lexeme $ nameTailed large
conSymish = lexeme $ liftA2 (:) (char ':') $ many $ sat isSymbol
conSym = do
  s <- conSymish
  if elem s [":", "::"] then bad $ "reserved: " ++ s else pure s
special c = lexeme $ sat (c ==)
comma = special ','
semicolon = special ';'
lParen = special '('
rParen = special ')'
lBrace = special '{'
rBrace = special '}'
lSquare = special '['
rSquare = special ']'
backquote = special '`'

lexeme f = f <* whitespace

lexemePrelude = whitespace *>
  Parser \pasta -> case getParser (res "module" <|> (:[]) <$> char '{') pasta of
    Left _ -> Right ((), curly (indentOf pasta) pasta)
    Right _ -> Right ((), pasta)

curlyCheck f = do
  Parser \pasta -> Right ((), modIndents (0:) pasta)
  r <- f
  Parser \pasta -> let pasta' = modIndents tail pasta in case readme pasta of
    []              -> Right ((), curly 0 pasta')
    ('{', _):_      -> Right ((), pasta')
    (_, (_, col)):_ -> Right ((), curly col pasta')
  pure r

conOf (Constr s _) = s
specialCase (h:_) = '|':conOf h
mkCase t cs = (specialCase cs,
  ( Qual [] $ arr t $ foldr arr (TV "case") $ map (\(Constr _ sts) -> foldr arr (TV "case") $ snd <$> sts) cs
  , E $ Basic "I"))
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", [])
scottEncode _ ":" _ = E $ Basic "CONS"
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs)
scottConstr t cs (Constr s sts) = (s,
  (Qual [] $ foldr arr t ts , scottEncode (map conOf cs) s $ mkStrs ts))
  : [(field, (Qual [] $ t `arr` ft, L s $ foldl A (V s) $ inj $ proj field)) | (field, ft) <- sts, field /= ""]
  where
  ts = snd <$> sts
  proj fd = foldr L (V fd) $ fst <$> sts
  inj x = map (\(Constr s' _) -> if s' == s then x else V "undefined") cs
mkAdtDefs t cs = mkCase t cs : concatMap (scottConstr t cs) cs

mkFFIHelper n t acc = case t of
  TC s -> acc
  TAp (TC "IO") _ -> acc
  TAp (TAp (TC "->") x) y -> L (show n) $ mkFFIHelper (n + 1) y $ A (V $ show n) acc

updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs
addAdt t cs ders (Neat tycl fs typed dcs ffis ffes ims) = foldr derive ast ders where
  ast = Neat tycl fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis ffes ims
  derive "Eq" = addInstance "Eq" (mkPreds "Eq") t
    [("==", Pa $ map eqCase cs
    )]
  derive "Show" = addInstance "Show" (mkPreds "Show") t
    [("showsPrec", L "prec" $ Pa $ map showCase cs
    )]
  derive der = error $ "bad deriving: " ++ der
  prec0 = E $ Const 0
  showCase (Constr con args) = let as = show <$> [1..length args]
    in ([PatCon con $ mkPatVar "" <$> as], case args of
      [] -> A (V "++") (E $ StrCon con)
      _ -> case con of
        ':':_ -> A (A (V "showParen") $ V "True") $ foldr1
          (\f g -> A (A (V ".") f) g)
          [ A (A (V "showsPrec") prec0) (V "1")
          , A (V "++") (E $ StrCon $ ' ':con++" ")
          , A (A (V "showsPrec") prec0) (V "2")
          ]
        _ -> A (A (V "showParen") $ A (A (V "<=") prec0) $ V "prec")
          $ A (A (V ".") $ A (V "++") (E $ StrCon con))
          $ foldr (\f g -> A (A (V ".") f) g) (L "x" $ V "x")
          $ map (\a -> A (A (V ".") (A (V ":") (E $ ChrCon ' '))) $ A (A (V "showsPrec") prec0) (V a)) as
      )
  mkPreds classId = Pred classId . TV <$> typeVars t
  mkPatVar pre s = PatVar (pre ++ s) Nothing
  eqCase (Constr con args) = let as = show <$> [1..length args]
    in ([PatCon con $ mkPatVar "l" <$> as], Pa
      [ ([PatCon con $ mkPatVar "r" <$> as], foldr (\x y -> (A (A (V "&&") x) y)) (V "True")
         $ map (\n -> A (A (V "==") (V $ "l" ++ n)) (V $ "r" ++ n)) as)
      , ([PatVar "_" Nothing], V "False")])

emptyTycl = Tycl [] []
addClass classId v (sigs, defs) (Neat tycl fs typed dcs ffis ffes ims) = let
  vars = take (size sigs) $ show <$> [0..]
  selectors = zipWith (\var (s, t) -> (s, (Qual [Pred classId v] t,
    L "@" $ A (V "@") $ foldr L (V var) vars))) vars $ toAscList sigs
  defaults = map (\(s, t) -> if member s sigs then ("{default}" ++ s, t) else error $ "bad default method: " ++ s) $ toAscList defs
  Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
  tycl' = insert classId (Tycl (keys sigs) is) tycl
  in if null ms then Neat tycl' (defaults ++ fs) (selectors ++ typed) dcs ffis ffes ims
    else error $ "duplicate class: " ++ classId

addInstance classId ps ty ds (Neat tycl fs typed dcs ffis ffes ims) = let
  Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
  tycl' = insert classId (Tycl ms $ Instance ty name ps (fromList ds):is) tycl
  name = '{':classId ++ (' ':shows ty "}")
  in Neat tycl' fs typed dcs ffis ffes ims

addFFI foreignname ourname t (Neat tycl fs typed dcs ffis ffes ims) = let
  fn = A (E $ Basic "F") $ E $ Const $ length ffis
  in Neat tycl fs ((ourname, (Qual [] t, mkFFIHelper 0 t fn)) : typed) dcs ((foreignname, t):ffis) ffes ims
addDefs ds (Neat tycl fs typed dcs ffis ffes ims) = Neat tycl (ds ++ fs) typed dcs ffis ffes ims
addImport im (Neat tycl fs typed dcs ffis exs ims) = Neat tycl fs typed dcs ffis exs (im:ims)
addExport e f (Neat tycl fs typed dcs ffis ffes ims) = Neat tycl fs typed dcs ffis ((e, f):ffes) ims

parseErrorRule = Parser \pasta -> case indents pasta of
  m:ms | m /= 0 -> Right ('}', modIndents tail pasta)
  _ -> badpos pasta "missing }"

res w@(h:_) = reservedSeq *> pure w <|> bad ("want \"" ++ w ++ "\"") where
  reservedSeq = if elem w ["let", "where", "do", "of"]
    then curlyCheck $ lexeme $ charSeq w *> notFollowedBy nameTailChar
    else lexeme $ charSeq w *> notFollowedBy (if isSmall h then nameTailChar else sat isSymbol)

paren = between lParen rParen
braceSep f = between lBrace (rBrace <|> parseErrorRule) $ foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) semicolon

maybeFix s x = if elem s $ fvPro [] x then A (V "fix") (L s x) else x

nonemptyTails [] = []
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt

joinIsFail t = A (L "join#" t) (V "fail#")

addLets ls x = foldr triangle x components where
  vs = fst <$> ls
  ios = foldr (\(s, dsts) (ins, outs) ->
    (foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
    (Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
  components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
  triangle names expr = let
    tnames = nonemptyTails names
    appem vs = foldl1 A $ V <$> vs
    suball expr = foldl A (foldr L expr $ init names) $ appem <$> init tnames
    redef tns expr = foldr L (suball expr) tns
    in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ redef xt $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames

data Assoc = NAssoc | LAssoc | RAssoc
instance Eq Assoc where
  NAssoc == NAssoc = True
  LAssoc == LAssoc = True
  RAssoc == RAssoc = True
  _ == _ = False
precOf s precTab = maybe 9 fst $ mlookup s precTab
assocOf s precTab = maybe LAssoc snd $ mlookup s precTab

opFold precTab f x xs = case xs of
  [] -> pure x
  (op, y):xt -> case find (\(op', _) -> assocOf op precTab /= assocOf op' precTab) xt of
    Nothing -> case assocOf op precTab of
      NAssoc -> case xt of
        [] -> pure $ f op x y
        y:yt -> bad "NAssoc repeat"
      LAssoc -> pure $ foldl (\a (op, y) -> f op a y) x xs
      RAssoc -> pure $ foldr (\(op, y) b -> \e -> f op e (b y)) id xs $ x
    Just y -> bad "Assoc clash"

qconop = conSym <|> res ":" <|> between backquote backquote conId

qconsym = conSym <|> res ":"

op = qconsym <|> varSym <|> between backquote backquote (conId <|> varId)
con = conId <|> paren qconsym
var = varId <|> paren varSym

tycon = do
  s <- conId
  pure $ if s == "String" then TAp (TC "[]") (TC "Char") else TC s

aType =
  lParen *>
    (   rParen *> pure (TC "()")
    <|> (foldr1 (TAp . TAp (TC ",")) <$> sepBy1 _type comma) <* rParen)
  <|> tycon
  <|> TV <$> varId
  <|> (lSquare *> (rSquare *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* rSquare)))
bType = foldl1 TAp <$> some aType
_type = foldr1 arr <$> sepBy bType (res "->")

fixityDecl w a = do
  res w
  n <- lexeme integer
  os <- sepBy op comma
  precs <- getPrecs
  putPrecs $ foldr (\o m -> insert o (n, a) m) precs os
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc

cDecls = first fromList . second fromList . foldr ($) ([], []) <$> braceSep cDecl
cDecl = first . (:) <$> genDecl <|> second . (++) <$> defSemi

genDecl = (,) <$> var <*> (res "::" *> _type)

classDecl = res "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (res "where" *> cDecls))

simpleClass = Pred <$> conId <*> _type
scontext = (:[]) <$> simpleClass <|> paren (sepBy simpleClass comma)

instDecl = res "instance" *>
  ((\ps cl ty defs -> addInstance cl ps ty defs) <$>
  (scontext <* res "=>" <|> pure [])
    <*> conId <*> _type <*> (res "where" *> braceDef))

letin = addLets <$> between (res "let") (res "in") braceDef <*> expr
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
  (res "if" *> expr) <*> (res "then" *> expr) <*> (res "else" *> expr)
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]")

alts = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->")
cas = flip A <$> between (res "case") (res "of") expr <*> alts
lamCase = curlyCheck (res "case") *> alts
lam = res "\\" *> (lamCase <|> liftA2 onePat (some apat) (res "->" *> expr))

flipPairize y x = A (A (V ",") x) y
moreCommas = foldr1 (A . A (V ",")) <$> sepBy1 expr comma
thenComma = comma *> ((flipPairize <$> moreCommas) <|> pure (A (V ",")))
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id)
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (:"") <$> comma)) <*> expr
section = lParen *> (parenExpr <* rParen <|> rightSect <* rParen <|> rParen *> pure (V "()"))

maybePureUnit = maybe (V "pure" `A` V "()") id
stmt = (\p x -> Just . A (V ">>=" `A` x) . onePat [p] . maybePureUnit) <$> pat <*> (res "<-" *> expr)
  <|> (\x -> Just . maybe x (\y -> (V ">>=" `A` x) `A` (L "_" y))) <$> expr
  <|> (\ds -> Just . addLets ds . maybePureUnit) <$> (res "let" *> braceDef)
doblock = res "do" *> (maybePureUnit . foldr ($) Nothing <$> braceSep stmt)

compQual =
  (\p xs e -> A (A (V "concatMap") $ onePat [p] e) xs)
    <$> pat <*> (res "<-" *> expr)
  <|> (\b e -> A (A (A (V "if") b) e) $ V "[]") <$> expr
  <|> addLets <$> (res "let" *> braceDef)

sqExpr = between lSquare rSquare $
  ((&) <$> expr <*>
    (   res ".." *>
      (   (\hi lo -> (A (A (V "enumFromTo") lo) hi)) <$> expr
      <|> pure (A (V "enumFrom"))
      )
    <|> res "|" *>
      ((. A (V "pure")) . foldr (.) id <$> sepBy1 compQual comma)
    <|> (\t h -> listify (h:t)) <$> many (comma *> expr)
    )
  )
  <|> pure (V "[]")

fbind = A <$> (V <$> var) <*> (res "=" *> expr)

fBinds v = (do
    fbs <- between lBrace rBrace $ sepBy1 fbind comma
    pure $ A (E $ Basic "{=") $ foldr A (E $ Basic "=}") $ v:fbs
  ) <|> pure v

atom = ifthenelse <|> doblock <|> letin <|> sqExpr <|> section
  <|> cas <|> lam <|> (paren comma *> pure (V ","))
  <|> V <$> (con <|> var) <|> literal
  >>= fBinds

aexp = foldl1 A <$> some atom

withPrec precTab n p = p >>= \s ->
  if n == precOf s precTab then pure s else Parser $ const $ Left ""

exprP n = if n <= 9
  then getPrecs >>= \precTab
    -> exprP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n op <*> exprP (succ n)) >>= \as
    -> opFold precTab (\op x y -> A (A (V op) x) y) a as
  else aexp
expr = exprP 0

gcon = conId <|> paren (qconsym <|> (:"") <$> comma) <|> (lSquare *> rSquare *> pure "[]")

apat = PatVar <$> var <*> (res "@" *> (Just <$> apat) <|> pure Nothing)
  <|> flip PatVar Nothing <$> (res "_" *> pure "_")
  <|> flip PatCon [] <$> gcon
  <|> PatLit <$> literal
  <|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" [])
    <$> between lSquare rSquare (sepBy pat comma)
  <|> paren (foldr1 pairPat <$> sepBy1 pat comma <|> pure (PatCon "()" []))
  where pairPat x y = PatCon "," [x, y]

binPat f x y = PatCon f [x, y]
patP n = if n <= 9
  then getPrecs >>= \precTab
    -> patP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n qconop <*> patP (succ n)) >>= \as
    -> opFold precTab binPat a as
  else PatCon <$> gcon <*> many apat <|> apat
pat = patP 0

maybeWhere p = (&) <$> p <*> (res "where" *> (addLets <$> braceDef) <|> pure id)

guards s = maybeWhere $ res s *> expr <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
  V "True" -> \_ -> y
  _ -> A (A (A (V "if") x) y)
  ) <$> (res "|" *> expr) <*> (res s *> expr))

onePat vs x = joinIsFail $ Pa [(vs, x)]
defOnePat vs x = Pa [(vs, x)]
opDef x f y rhs = [(f, defOnePat [x, y] rhs)]
leftyPat p expr = case pvars of
  [] -> []
  (h:t) -> let gen = '@':h in
    (gen, expr):map (\v -> (v, A (Pa [([p], V v)]) $ V gen)) pvars
  where
  pvars = filter (/= "_") $ patVars p
def = liftA2 (\l r -> [(l, r)]) var (liftA2 defOnePat (many apat) $ guards "=")
  <|> (pat >>= \x -> opDef x <$> varSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=")
coalesce = \case
  [] -> []
  h@(s, x):t -> case t of
    [] -> [h]
    (s', x'):t' -> let
      f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
      f _ _ = error "bad multidef"
      in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
defSemi = coalesce . concat <$> sepBy1 def (some semicolon)
braceDef = concat <$> braceSep defSemi

simpleType c vs = foldl TAp (TC c) (map TV vs)
conop = conSym <|> between backquote backquote conId
fieldDecl = (\vs t -> map (, t) vs) <$> sepBy1 var comma <*> (res "::" *> _type)
constr = (\x c y -> Constr c [("", x), ("", y)]) <$> aType <*> conop <*> aType
  <|> Constr <$> conId <*>
    (   concat <$> between lBrace rBrace (fieldDecl `sepBy` comma)
    <|> map ("",) <$> many aType)
dclass = conId
_deriving = (res "deriving" *> ((:[]) <$> dclass <|> paren (dclass `sepBy` comma))) <|> pure []
adt = addAdt <$> between (res "data") (res "=") (simpleType <$> conId <*> many varId) <*> sepBy constr (res "|") <*> _deriving

impDecl = addImport <$> (res "import" *> conId)

topdecls = braceSep
  $   adt
  <|> classDecl
  <|> instDecl
  <|> res "foreign" *>
    (   res "import" *> var *> (addFFI <$> lexeme tokStr <*> var <*> (res "::" *> _type))
    <|> res "export" *> var *> (addExport <$> lexeme tokStr <*> var)
    )
  <|> addDefs <$> defSemi
  <|> fixity *> pure id
  <|> impDecl

haskell = between lexemePrelude eof $ some $ (,) <$> (res "module" *> conId <* res "where" <|> pure "Main") <*> topdecls

parseProgram s = fst <$> parse haskell s
-- Record fields.
module Typer where

import Base
import Map
import Ast
import Parser
import Unify

app01 s x y = maybe (A (L s x) y) snd $ go x where
  go expr = case expr of
    E _ -> Just (False, expr)
    V v -> Just $ if s == v then (True, y) else (False, expr)
    A l r -> do
      (a, l') <- go l
      (b, r') <- go r
      if a && b then Nothing else pure (a || b, A l' r')
    L v t -> if v == s then Just (False, expr) else second (L v) <$> go t

optiApp t = case t of
  A x y -> let
    x' = optiApp x
    y' = optiApp y
    in case x' of
      L s v -> app01 s v y'
      _ -> A x' y'
  L s x -> L s (optiApp x)
  _ -> t

-- Pattern compiler.
findCon dcs s = foldr (<|>) Nothing $ mlookup s <$> dcs

rewritePats dcs = \case
  [] -> pure $ V "join#"
  vsxs@((as0, _):_) -> case as0 of
    [] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
    _ -> do
      let k = length as0
      n <- get
      put $ n + k
      let vs@(vh:vt) = take k $ (`shows` "#") <$> [n..]
      cs <- flip mapM vsxs \(a:at, x) -> (a,) <$> foldM (\b (p, v) -> rewriteCase dcs v Tip [(p, b)]) x (zip at vt)
      flip (foldr L) vs <$> rewriteCase dcs vh Tip cs

patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y

rewriteCase dcs caseVar tab = \case
  [] -> flush $ V "join#"
  ((v, x):rest) -> go v x rest
  where
  rec = rewriteCase dcs caseVar
  go v x rest = case v of
    PatLit lit -> patEq lit (V caseVar) x <$> rec Tip rest >>= flush
    PatVar s m -> let x' = beta s (V caseVar) x in case m of
      Nothing -> A (L "join#" x') <$> rec Tip rest >>= flush
      Just v' -> go v' x' rest
    PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
  flush onFail = case toAscList tab of
    [] -> pure onFail
    -- TODO: Check rest of `tab` lies in cs.
    (firstC, _):_ -> do
      let cs = maybe undefined id $ findCon dcs firstC
      jumpTable <- mapM (\(Constr s ts) -> case mlookup s tab of
          Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
          Just f -> rewritePats dcs $ f []
        ) cs
      pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail

findField dcs f = case [(con, fields) | tab <- dcs, (_, cons) <- toAscList tab, Constr con fields <- cons, (f', _) <- fields, f == f'] of
  [] -> error $ "no such field: " ++ f
  h:_ -> h

resolveFieldBinds dcs t = go t where
  go t = case t of
    E _ -> t
    V _ -> t
    A (E (Basic "{=")) (A rawExpr fbsAst) -> let
      expr = go rawExpr
      fromAst t = case t of
        A (A (V f) body) rest -> (f, go body):fromAst rest
        E (Basic "=}") -> []
      fbs@((firstField, _):_) = fromAst fbsAst
      (con, fields) = findField dcs firstField
      cs = maybe undefined id $ findCon dcs con
      newValue = foldl A (V con) [maybe (V $ "[old]"++f) id $ lookup f fbs | (f, _) <- fields]
      initValue = foldl A expr [maybe (V "undefined") id $ lookup f fbs | (f, _) <- fields]
      updater = foldr L newValue $ ("[old]"++) . fst <$> fields
      inj x = map (\(Constr con' _) -> if con' == con then x else V "undefined") cs
      allPresent = all (`elem` (fst <$> fields)) $ fst <$> fbs
      isCon = case expr of
        V (h:_) -> 'A' <= h && h <= 'Z'
        _ -> False
      in if allPresent
        then if isCon then initValue else foldl A (A (V $ specialCase cs) expr) $ inj updater
        else error "bad fields in update"
    A x y -> A (go x) (go y)
    L s x -> L s $ go x

secondM f (a, b) = (a,) <$> f b
patternCompile dcs t = optiApp $ resolveFieldBinds dcs $ evalState (go t) 0 where
  go t = case t of
    E _ -> pure t
    V _ -> pure t
    A x y -> liftA2 A (go x) (go y)
    L s x -> L s <$> go x
    Pa vsxs -> mapM (secondM go) vsxs >>= rewritePats dcs

-- Type inference.
instantiate' t n tab = case t of
  TC s -> ((t, n), tab)
  TV s -> case lookup s tab of
    Nothing -> let va = TV $ show n in ((va, n + 1), (s, va):tab)
    Just v -> ((v, n), tab)
  TAp x y -> let
    ((t1, n1), tab1) = instantiate' x n tab
    ((t2, n2), tab2) = instantiate' y n1 tab1
    in ((TAp t1 t2, n2), tab2)

instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab)

instantiate (Qual ps t) n = first (Qual ps1) $ fst $ instantiate' t n1 tab where
  ((ps1, n1), tab) = foldr instantiatePred (([], n), []) ps

proofApply sub a = case a of
  Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
  A x y -> A (proofApply sub x) (proofApply sub y)
  L s t -> L s $ proofApply sub t
  _ -> a

typeAstSub sub (t, a) = (apply sub t, proofApply sub a)

infer typed loc ast csn@(cs, n) = case ast of
  E x -> Right $ case x of
    Const _ -> ((TC "Int", ast), csn)
    ChrCon _ -> ((TC "Char", ast), csn)
    StrCon _ -> ((TAp (TC "[]") (TC "Char"), ast), csn)
    Link im s q -> insta q
  V s -> maybe (Left $ "undefined: " ++ s) Right
    $ (\t -> ((t, ast), csn)) <$> lookup s loc
    <|> insta . fst <$> mlookup s typed
  A x y -> infer typed loc x (cs, n + 1) >>=
    \((tx, ax), csn1) -> infer typed loc y csn1 >>=
    \((ty, ay), (cs2, n2)) -> unify tx (arr ty va) cs2 >>=
    \cs -> Right ((va, A ax ay), (cs, n2))
  L s x -> first (\(t, a) -> (arr va t, L s a)) <$> infer typed ((s, va):loc) x (cs, n + 1)
  where
  va = TV $ show n
  insta ty = ((ty1, foldl A ast (map Proof preds)), (cs, n1))
    where (Qual preds ty1, n1) = instantiate ty n

findInstance tycl qn@(q, n) p@(Pred cl ty) insts = case insts of
  [] -> let v = '*':show n in Right (((p, v):q, n + 1), V v)
  (modName, Instance h name ps _):rest -> case match h ty of
    Nothing -> findInstance tycl qn p rest
    Just subs -> foldM (\(qn1, t) (Pred cl1 ty1) -> second (A t)
      <$> findProof tycl (Pred cl1 $ apply subs ty1) qn1) (qn, if modName == "" then V name else E $ Link modName name undefined) ps

findProof tycl pred@(Pred classId t) psn@(ps, n) = case lookup pred ps of
  Nothing -> findInstance tycl psn pred $ tycl classId
  Just s -> Right (psn, V s)

prove tycl psn a = case a of
  Proof pred -> findProof tycl pred psn
  A x y -> prove tycl psn x >>= \(psn1, x1) ->
    second (A x1) <$> prove tycl psn1 y
  L s t -> second (L s) <$> prove tycl psn t
  _ -> Right (psn, a)

data Dep a = Dep ([String] -> Either String ([String], a))
instance Functor Dep where
  fmap f = \(Dep mf) -> Dep \g -> do
    (g', x) <- mf g
    pure (g', f x)
instance Applicative Dep where
  pure x = Dep \g -> Right (g, x)
  (Dep mf) <*> (Dep mx) = Dep \g -> do
    (g', f) <- mf g
    (g'', x) <- mx g'
    pure (g'', f x)
addDep s = Dep \deps -> Right (if s `elem` deps then deps else s : deps, ())
badDep s = Dep $ const $ Left s
runDep (Dep f) = f []

astLink typed locals imps mods ast = runDep $ go [] ast where
  go bound ast = case ast of
    V s
      | elem s bound -> pure ast
      | member s locals -> case findImportSym imps mods s of
        [] -> (if member s typed then pure () else addDep s) *> pure ast
        _ -> badDep $ "ambiguous: " ++ s
      | True -> case findImportSym imps mods s of
        [] -> badDep $ "missing: " ++ s
        [(im, t)] -> pure $ E $ Link im s t
        _ -> badDep $ "ambiguous: " ++ s
    A x y -> A <$> go bound x <*> go bound y
    L s t -> L s <$> go (s:bound) t
    _ -> pure ast

forFree cond f bound t = case t of
  E _ -> t
  V s -> if (not $ s `elem` bound) && cond s then f t else t
  A x y -> A (rec bound x) (rec bound y)
  L s t' -> L s $ rec (s:bound) t'
  where rec = forFree cond f

inferno tycl typed defmap syms = let
  loc = zip syms $ TV . (' ':) <$> syms
  principal (acc, (subs, n)) s = do
    expr <- maybe (Left $ "missing: " ++ s) Right (mlookup s defmap)
    ((t, a), (ms, n1)) <- infer typed loc expr (subs, n)
    cs <- unify (TV (' ':s)) t ms
    Right ((s, (t, a)):acc, (cs, n1))
  gatherPreds (acc, psn) (s, (t, a)) = do
    (psn, a) <- prove tycl psn a
    pure ((s, (t, a)):acc, psn)
  in do
    (stas, (soln, _)) <- foldM principal ([], (Tip, 0)) syms
    stas <- pure $ second (typeAstSub soln) <$> stas
    (stas, (ps, _)) <- foldM gatherPreds ([], ([], 0)) $ second (typeAstSub soln) <$> stas
    let
      preds = fst <$> ps
      dicts = snd <$> ps
      applyDicts (s, (t, a)) = (s, (Qual preds t,
        foldr L (forFree (`elem` syms) (\t -> foldl A t $ V <$> dicts) [] a) dicts))
    pure $ map applyDicts stas

findImportSym imps mods s = concat [maybe [] (\(t, _) -> [(im, t)]) $ mlookup s qas | im <- imps, let qas = fst $ mods ! im]

inferDefs tycl defs typed = do
  let
    insertUnique m (s, (_, t)) = case mlookup s m of
      Nothing -> case mlookup s typed of
        Nothing -> Right $ insert s t m
        _ -> Left $ "reserved: " ++ s
      _ -> Left $ "duplicate: " ++ s
    addEdges (sym, (deps, _)) (ins, outs) = (foldr (\dep es -> insertWith union dep [sym] es) ins deps, insertWith union sym deps outs)
    graph = foldr addEdges (Tip, Tip) defs
  defmap <- foldM insertUnique Tip defs
  let
    ins k = maybe [] id $ mlookup k $ fst graph
    outs k = maybe [] id $ mlookup k $ snd graph
    inferComponent typed syms = foldr (uncurry insert) typed <$> inferno tycl typed defmap syms
  foldM inferComponent typed $ scc ins outs $ keys defmap

dictVars ps n = (zip ps $ map (('*':) . show) [n..], n + length ps)

inferTypeclasses tycl typeOfMethod typed dcs linker ienv = foldM perClass typed $ toAscList ienv where
  perClass typed (classId, Tycl sigs insts) = foldM perInstance typed insts where
    perInstance typed (Instance ty name ps idefs) = do
      let
        dvs = map snd $ fst $ dictVars ps 0
        perMethod s = do
          let rawExpr = maybe (V $ "{default}" ++ s) id $ mlookup s idefs
          expr <- snd <$> linker (patternCompile dcs rawExpr)
          (ta, (sub, n)) <- either (Left . (name++) . (" "++) . (s++) . (": "++)) Right
            $ infer typed [] expr (Tip, 0)
          let
            (tx, ax) = typeAstSub sub ta
-- e.g. qc = Eq a => a -> a -> Bool
-- We instantiate: Eq a1 => a1 -> a1 -> Bool.
            qc = typeOfMethod s
            (Qual [Pred _ headT] tc, n1) = instantiate qc n
-- Mix the predicates `ps` with the type of `headT`, applying a
-- substitution such as (a1, [a]) so the variable names match.
-- e.g. Eq a => [a] -> [a] -> Bool
            Just subc = match headT ty
            (Qual ps2 t2, n2) = instantiate (Qual ps $ apply subc tc) n1
          case match tx t2 of
            Nothing -> Left "class/instance type conflict"
            Just subx -> do
              ((ps3, _), tr) <- prove tycl (dictVars ps2 0) (proofApply subx ax)
              if length ps2 /= length ps3
                then Left $ ("want context: "++) . (foldr (.) id $ shows . fst <$> ps3) $ name
                else pure tr
      ms <- mapM perMethod sigs
      pure $ insert name (Qual [] $ TC "DICTIONARY", flip (foldr L) dvs $ L "@" $ foldl A (V "@") ms) typed

primAdts =
  [ (TC "()", [Constr "()" []])
  , (TC "Bool", [Constr "True" [], Constr "False" []])
  , (TAp (TC "[]") (TV "a"), [Constr "[]" [], Constr ":" $ map ("",) [TV "a", TAp (TC "[]") (TV "a")]])
  , (TAp (TAp (TC ",") (TV "a")) (TV "b"), [Constr "," $ map ("",) [TV "a", TV "b"]])
  ]

prims = let
  ro = E . Basic
  dyad s = TC s `arr` (TC s `arr` TC s)
  bin s = A (ro "Q") (ro s)
  in map (second (first $ Qual [])) $
    [ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
    , ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
    , ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
    , ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
    , ("fix", (arr (arr (TV "a") (TV "a")) (TV "a"), ro "Y"))
    , ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
    , ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
    , ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
    , ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
    , ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro "V"))
    , ("primitiveError", (arr (TAp (TC "[]") (TC "Char")) (TV "a"), ro "ERR"))
    , ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))), ro "NEWREF"))
    , ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
      A (ro "T") (ro "READREF")))
    , ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
      A (A (ro "R") (ro "WRITEREF")) (ro "B")))
    , ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
    , ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
    , ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    , ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    ]
    ++ map (\(s, v) -> (s, (dyad "Int", bin v)))
      [ ("intAdd", "ADD")
      , ("intSub", "SUB")
      , ("intMul", "MUL")
      , ("intDiv", "DIV")
      , ("intMod", "MOD")
      , ("intQuot", "DIV")
      , ("intRem", "MOD")
      ]

neatImportPrim = Neat Tip [] [] Tip [] [] ["#"]

tabulateModules mods = foldM ins Tip mods where
  go = foldr ($) neatImportPrim
  ins tab (k, prog) = case mlookup k tab of
    Nothing -> Right $ insert k (go prog) tab
    Just _ -> Left $ "duplicate module: " ++ k

inferModule tab acc name = case mlookup name acc of
  Nothing -> do
    let
      Neat rawIenv defs typedList adtTab ffis ffes imps = tab ! name
      typed = fromList typedList
      fillSigs (cl, Tycl sigs is) = (cl,) $ case sigs of
        [] -> Tycl (findSigs cl) is
        _ -> Tycl sigs is
      findSigs cl = maybe (error $ "no sigs: " ++ cl) id $ find (not . null) [maybe [] (\(Tycl sigs _) -> sigs) $ mlookup cl $ typeclasses (tab ! im) | im <- imps]
      ienv = fromList $ fillSigs <$> toAscList rawIenv
      locals = fromList $ map (, ()) $ (fst <$> typedList) ++ (fst <$> defs)
      insts im (Tycl _ is) = (im,) <$> is
      classes im = if im == "" then ienv else typeclasses $ tab ! im
      tycl classId = concat [maybe [] (insts im) $ mlookup classId $ classes im | im <- "":imps]
      dcs = adtTab : map (dataCons . (tab !)) imps
      typeOfMethod s = maybe undefined id $ foldr (<|>) (fst <$> mlookup s typed) [fmap fst $ lookup s $ typedAsts $ tab ! im | im <- imps]
    acc' <- foldM (inferModule tab) acc imps
    let linker = astLink typed locals imps acc'
    depdefs <- mapM (\(s, t) -> (s,) <$> linker (patternCompile dcs t)) defs
    typed <- inferDefs tycl depdefs typed
    typed <- inferTypeclasses tycl typeOfMethod typed dcs linker ienv
    Right $ insert name (typed, (ffis, ffes)) acc'
  Just _ -> Right acc

untangle s = do
  tab <- insert "#" neatPrim <$> (parseProgram s >>= tabulateModules)
  foldM (inferModule tab) Tip $ keys tab

neatPrim = foldr (\(a, b) -> addAdt a b []) (Neat Tip [] prims Tip [] [] []) primAdts

We replace a list with a Map for faster type unification.

-- Replace list with map.
module Unify where

import Base
import Map
import Ast

apply sub t = case t of
  TC v -> t
  TV v -> maybe t id $ mlookup v sub
  TAp a b -> TAp (apply sub a) (apply sub b)

(@@) s1 s2 = foldr (\(k, v) m -> insert k v m) (apply s1 <$> s2) $ toAscList s1

occurs s t = case t of
  TC v -> False
  TV v -> s == v
  TAp a b -> occurs s a || occurs s b

varBind s t = case t of
  TC v -> Right $ singleton s t
  TV v -> Right $ if v == s then Tip else singleton s t
  TAp a b -> if occurs s t then Left "occurs check" else Right $ singleton s t

ufail t u = Left $ ("unify fail: "++) . shows t . (" vs "++) . shows u $ ""

mgu t u = case t of
  TC a -> case u of
    TC b -> if a == b then Right Tip else ufail t u
    TV b -> varBind b t
    TAp a b -> ufail t u
  TV a -> varBind a u
  TAp a b -> case u of
    TC b -> ufail t u
    TV b -> varBind b t
    TAp c d -> mgu a c >>= unify b d

unify a b s = (@@ s) <$> mgu (apply s a) (apply s b)

merge s1 s2 = foldM go s2 $ toAscList s1 where
  go subs (v, t) = case mlookup v s2 of
    Nothing -> Just $ insert v t subs
    Just _  | apply s1 (TV v) == apply s2 (TV v) -> Just subs
            | True -> Nothing

match h t = case h of
  TC a -> case t of
    TC b | a == b -> Just Tip
    _ -> Nothing
  TV a -> Just $ singleton a t
  TAp a b -> case t of
    TAp c d -> case match a c of
      Nothing -> Nothing
      Just ac -> case match b d of
        Nothing -> Nothing
        Just bd -> merge ac bd
    _ -> Nothing

Party2

Recall we require a fixity declaration to precede the use of its corresponding operator, which forces us to concatenate module sources in a particular order. We remove this wart by adding a new phase. Once done, not only may we paste together modules in any order, but we may also declare fixities anywhere within a module.

During parsing, operators have the same precedence. When a chain of two or more appear in a row, we abuse the syntax tree to store them in a right-associative list, for example: [1 + 2, * 3, - 4, + 5].

For patterns, we use the list field of a PatCon value; a made-up data constructor "{+" indicates the beginning of such a list. Expressions are clumsier; we bookend chains with L "(" and V ")", and fashion a list out of A and V nodes.

Later, once all fixity declarations are known, we traverse the syntax tree, and we re-associate each specially marked infix chain. The algorithm starts with the first binary infix expression, that is, two operands and one operator such as 1 + 2. For each operator and operand we add on the right, we walk down the right spine of the current syntax tree until we reach a node of higher precedence; leaf nodes are considered to have maximum precedence. Then we insert the operator and operand at this point. We also check for illegal infix operator conflicts.

The code is messy due to a couple of wrinkles. Firstly, we have two distinct ad hoc representations of lists for holding infix chains. Secondly, we temporarily store the AST being reshaped in one-off tree structures.

However, we’re still cheating: we maintain one giant fixity declaration table for all operators across all modules, which relies on operators being distinct. Also, we only allow top-level fixity declarations. We could add support for scoped fixity declarations with yet more ad hoc encodings that we later use to create scoped fixity lookup tables that override the global ones.

We fix the problem with foreign imports across multiple modules. In the lone-module days, we numbered the imports as we parsed the source. Now, the numbering must be consistent across all modules.

In the spirit of incremental compilation, we replace the number of an import with its name in the syntax tree, which we map to a number during our code generation that corresponds to linking.

We reuse the Link data constructor for this. The special {foreign} module indicates the function name is foreign.

We also check for name conflicts among foreign imports and exports.

We take advantage of our new ability to derive Eq and Show instances, and also name the fields of the Neat data type.

The Haskell report describes layout parsing as a separate phase, and we had followed this closely in our first implementation of the feature.

It turns out to be less code to inline the various bits and pieces of the layout logic in the parser. We do wind up with a touch more complexity, as comments and whitespace must be parsed in a different code path, but it’s manageable.

For parsing one of let where do of, and also \case since we act as if the LambdaCase is enabled, the curlyCheck function temporarily disables the angle-bracket indentation rule by placing an indent value of 0 at the head of the indents list.

-- Use `deriving`.
-- Change `isEOF` and `getChar` to behave more like Haskell's.
module Base where

infixr 9 .
infixl 7 * , `div` , `mod`
infixl 6 + , -
infixr 5 ++
infixl 4 <*> , <$> , <* , *>
infix 4 == , /= , <= , < , >= , >
infixl 3 && , <|>
infixl 2 ||
infixl 1 >> , >>=
infixr 1 =<<
infixr 0 $

class Functor f where fmap :: (a -> b) -> f a -> f b
class Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
(<$>) = fmap
liftA2 f x y = f <$> x <*> y
(>>) f g = f >>= \_ -> g
(=<<) = flip (>>=)
class Eq a where (==) :: a -> a -> Bool
instance Eq () where () == () = True
instance Eq Bool where
  True == True = True
  False == False = True
  _ == _ = False
instance (Eq a, Eq b) => Eq (a, b) where
  (a1, b1) == (a2, b2) = a1 == a2 && b1 == b2
instance Eq a => Eq [a] where
  xs == ys = case xs of
    [] -> case ys of
      [] -> True
      _ -> False
    x:xt -> case ys of
      [] -> False
      y:yt -> x == y && xt == yt
instance Eq Int where (==) = intEq
instance Eq Char where (==) = charEq
($) f x = f x
id x = x
const x y = x
flip f x y = f y x
(&) x f = f x
class Ord a where
  (<=) :: a -> a -> Bool
  x <= y = case compare x y of
    LT -> True
    EQ -> True
    GT -> False
  compare :: a -> a -> Ordering
  compare x y = if x <= y then if y <= x then EQ else LT else GT
instance Ord Int where (<=) = intLE
instance Ord Char where (<=) = charLE
data Ordering = LT | GT | EQ deriving (Eq, Show)
instance Ord a => Ord [a] where
  xs <= ys = case xs of
    [] -> True
    x:xt -> case ys of
      [] -> False
      y:yt -> if x <= y then if y <= x then xt <= yt else True else False
  compare xs ys = case xs of
    [] -> case ys of
      [] -> EQ
      _ -> LT
    x:xt -> case ys of
      [] -> GT
      y:yt -> if x <= y then if y <= x then compare xt yt else LT else GT
data Maybe a = Nothing | Just a deriving (Eq, Show)
data Either a b = Left a | Right b deriving (Eq, Show)
fst (x, y) = x
snd (x, y) = y
uncurry f (x, y) = f x y
first f (x, y) = (f x, y)
second f (x, y) = (x, f y)
not a = if a then False else True
x /= y = not $ x == y
(.) f g x = f (g x)
(||) f g = if f then True else g
(&&) f g = if f then g else False
take 0 xs = []
take _ [] = []
take n (h:t) = h : take (n - 1) t
drop n xs     | n <= 0 = xs
drop _ []              = []
drop n (_:xs)          = drop (n-1) xs
splitAt n xs = (take n xs, drop n xs)
maybe n j m = case m of Nothing -> n; Just x -> j x
instance Functor Maybe where fmap f = maybe Nothing (Just . f)
instance Applicative Maybe where pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf
instance Monad Maybe where return = Just ; mf >>= mg = maybe Nothing mg mf
instance Alternative Maybe where empty = Nothing ; x <|> y = maybe y Just x
foldr c n = \case [] -> n; h:t -> c h $ foldr c n t
length = foldr (\_ n -> n + 1) 0
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure [])
mapM_ f = foldr ((>>) . f) (pure ())
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0
when x y = if x then y else pure ()
unless x y = if x then pure () else y
error = primitiveError
undefined = error "undefined"
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a
foldl1 f (h:t) = foldl f h t
elem k xs = foldr (\x t -> x == k || t) False xs
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs
(++) = flip (foldr (:))
concat = foldr (++) []
map = flip (foldr . ((:) .)) []
head (h:_) = h
tail (_:t) = t
xs!!0 = head xs
xs!!n = tail xs!!(n - 1)
replicate 0 _ = []
replicate n x = x : replicate (n - 1) x
null [] = True
null _ = False
reverse = foldl (flip (:)) []
dropWhile _ [] = []
dropWhile p xs@(x:xt)
  | p x  = dropWhile p xt
  | True = xs
span _ [] = ([], [])
span p xs@(x:xt)
  | p x  = first (x:) $ span p xt
  | True = ([],xs)
break p = span (not . p)
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13, 160]
words s = case dropWhile isSpace s of
  "" -> []
  s' -> w : words s'' where (w, s'') = break isSpace s'
instance Functor [] where fmap = map
instance Applicative [] where pure = (:[]); f <*> x = concatMap (<$> x) f
instance Monad [] where return = (:[]); (>>=) = flip concatMap
concatMap = (concat .) . map
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing
filter f = foldr (\x xs -> if f x then x:xs else xs) []
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys
intersect xs ys = filter (\x -> maybe False (\_ -> True) $ find (x ==) ys) xs
last (x:xt) = go x xt where go x xt = case xt of [] -> x; y:yt -> go y yt
init (x:xt) = case xt of [] -> []; _ -> x : init xt
intercalate sep = \case [] -> []; x:xt -> x ++ concatMap (sep ++) xt
intersperse sep = \case [] -> []; x:xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt)
all f = and . map f
any f = or . map f
and = foldr (&&) True
or = foldr (||) False
zipWith f xs ys = case xs of [] -> []; x:xt -> case ys of [] -> []; y:yt -> f x y : zipWith f xt yt
zip = zipWith (,)
data State s a = State (s -> (a, s))
runState (State f) = f
instance Functor (State s) where fmap f = \(State h) -> State (first f . h)
instance Applicative (State s) where
  pure a = State (a,)
  (State f) <*> (State x) = State \s -> let (g, s') = f s in first g $ x s'
instance Monad (State s) where
  return a = State (a,)
  (State h) >>= f = State $ uncurry (runState . f) . h
evalState m s = fst $ runState m s
get = State \s -> (s, s)
put n = State \s -> ((), n)
either l r e = case e of Left x -> l x; Right x -> r x
instance Functor (Either a) where fmap f e = either Left (Right . f) e
instance Applicative (Either a) where
  pure = Right
  ef <*> ex = case ef of
    Left s -> Left s
    Right f -> either Left (Right . f) ex
instance Monad (Either a) where
  return = Right
  ex >>= f = either Left f ex
class Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a
asum = foldr (<|>) empty
(*>) = liftA2 \x y -> y
(<*) = liftA2 \x y -> x
many p = liftA2 (:) p (many p) <|> pure []
some p = liftA2 (:) p (many p)
sepBy1 p sep = liftA2 (:) p (many (sep *> p))
sepBy p sep = sepBy1 p sep <|> pure []
between x y p = x *> (p <* y)

showParen b f = if b then ('(':) . f . (')':) else f

iterate f x = x : iterate f (f x)
takeWhile _ [] = []
takeWhile p xs@(x:xt)
  | p x  = x : takeWhile p xt
  | True = []

class Enum a where
  succ           :: a -> a
  pred           :: a -> a
  toEnum         :: Int -> a
  fromEnum       :: a -> Int
  enumFrom       :: a -> [a]
  enumFromTo     :: a -> a -> [a]
instance Enum Int where
  succ = (+1)
  pred = (+(0-1))
  toEnum = id
  fromEnum = id
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo
instance Enum Char where
  succ = chr . (+1) . ord
  pred = chr . (+(0-1)) . ord
  toEnum = chr
  fromEnum = ord
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo

(+) = intAdd
(-) = intSub
(*) = intMul
div = intDiv
mod = intMod

instance (Ord a, Ord b) => Ord (a, b) where
  (a1, b1) <= (a2, b2) = a1 <= a2 && (not (a2 <= a1) || b1 <= b2)

a < b = a <= b && a /= b
a > b = b <= a && a /= b
(>=) = flip(<=)

instance Applicative IO where pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y)
instance Monad IO where return = ioPure ; (>>=) = ioBind
instance Functor IO where fmap f x = ioPure f <*> x
class Show a where
  showsPrec :: Int -> a -> String -> String
  showsPrec _ x = (show x++)
  show :: a -> String
  show x = shows x ""
  showList :: [a] -> String -> String
  showList = showList__ shows
shows = showsPrec 0
showList__ _     []     s = "[]" ++ s
showList__ showx (x:xs) s = '[' : showx x (showl xs)
  where
    showl []     = ']' : s
    showl (y:ys) = ',' : showx y (showl ys)
showInt__ n
  | 0 == n = id
  | True = showInt__ (n`div`10) . (chr (48+n`mod`10):)
instance Show () where show () = "()"
instance Show Bool where
  show True = "True"
  show False = "False"
instance Show a => Show [a] where showsPrec _ = showList
instance Show Int where
  showsPrec _ n
    | 0 == n = ('0':)
    | 1 <= n = showInt__ n
    | 2 * n == 0 = ("-2147483648"++)
    | True = ('-':) . showInt__ (0 - n)
showLitChar__ '\n' = ("\\n"++)
showLitChar__ '\\' = ("\\\\"++)
showLitChar__ c = (c:)
instance Show Char where
  showsPrec _ '\'' = ("'\\''"++)
  showsPrec _ c = ('\'':) . showLitChar__ c . ('\'':)
  showList s = ('"':) . foldr (.) id (map go s) . ('"':) where
    go '"' = ("\\\""++)
    go c = showLitChar__ c
instance (Show a, Show b) => Show (a, b) where
  showsPrec _ (a, b) = showParen True $ shows a . (',':) . shows b
-- FFI across multiple modules.
-- Rewrite with named fields, deriving.
module Ast where
import Base
import Map

data Type = TC String | TV String | TAp Type Type deriving Eq
arr a b = TAp (TAp (TC "->") a) b
data Extra = Basic String | Const Int | ChrCon Char | StrCon String | Link String String Qual
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat]
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred
data Constr = Constr String [(String, Type)]
data Pred = Pred String Type deriving Eq
data Qual = Qual [Pred] Type

instance Show Type where
  showsPrec _ = \case
    TC s -> (s++)
    TV s -> (s++)
    TAp (TAp (TC "->") a) b -> showParen True $ shows a . (" -> "++) . shows b
    TAp a b -> showParen True $ shows a . (' ':) . shows b
instance Show Pred where
  showsPrec _ (Pred s t) = (s++) . (' ':) . shows t . (" => "++)
instance Show Qual where
  showsPrec _ (Qual ps t) = foldr (.) id (map shows ps) . shows t
instance Show Extra where
  showsPrec _ = \case
    Basic s -> (s++)
    Const i -> shows i
    ChrCon c -> shows c
    StrCon s -> shows s
    Link im s _ -> (im++) . ('.':) . (s++)
instance Show Pat where
  showsPrec _ = \case
    PatLit e -> shows e
    PatVar s mp -> (s++) . maybe id ((('@':) .) . shows) mp
    PatCon s ps -> (s++) . foldr (.) id (((' ':) .) . shows <$> ps)

showVar s@(h:_) = showParen (elem h ":!#$%&*+./<=>?@\\^|-~") (s++)

instance Show Ast where
  showsPrec prec = \case
    E e -> shows e
    V s -> showVar s
    A x y -> showParen (1 <= prec) $ shows x . (' ':) . showsPrec 1 y
    L s t -> showParen True $ ('\\':) . (s++) . (" -> "++) . shows t
    Pa vsts -> ('\\':) . showParen True (foldr (.) id $ intersperse (';':) $ map (\(vs, t) -> foldr (.) id (intersperse (' ':) $ map (showParen True . shows) vs) . (" -> "++) . shows t) vsts)
    Proof p -> ("{Proof "++) . shows p . ("}"++)

data Instance = Instance
  -- Type, e.g. Int for Eq Int.
  Type
  -- Dictionary name, e.g. "{Eq Int}"
  String
  -- Context.
  [Pred]
  -- Method definitions
  (Map String Ast)

data Assoc = NAssoc | LAssoc | RAssoc deriving Eq

data Neat = Neat
  { typeclasses :: Map String [String]
  , instances :: Map String [Instance]
  , topDefs :: [(String, Ast)]
  -- | Typed ASTs, ready for compilation, including ADTs and methods,
  -- e.g. (==), (Eq a => a -> a -> Bool, select-==)
  , typedAsts :: [(String, (Qual, Ast))]
  , dataCons :: Map String [Constr]
  , ffiImports :: Map String Type
  , ffiExports :: Map String String
  , moduleImports :: [String]
  , opFixity :: Map String (Int, Assoc)
  }

neatEmpty = Neat Tip Tip [] [] Tip Tip Tip [] Tip

patVars = \case
  PatLit _ -> []
  PatVar s m -> s : maybe [] patVars m
  PatCon _ args -> concat $ patVars <$> args

fvPro bound expr = case expr of
  V s | not (elem s bound) -> [s]
  A x y -> fvPro bound x `union` fvPro bound y
  L s t -> fvPro (s:bound) t
  Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
  _ -> []

beta s a t = case t of
  E _ -> t
  V v -> if s == v then a else t
  A x y -> A (beta s a x) (beta s a y)
  L v u -> if s == v then t else L v $ beta s a u

typeVars = \case
  TC _ -> []
  TV v -> [v]
  TAp x y -> typeVars x `union` typeVars y

depthFirstSearch = (foldl .) \relation st@(visited, sequence) vertex ->
  if vertex `elem` visited then st else second (vertex:)
    $ depthFirstSearch relation (vertex:visited, sequence) (relation vertex)

spanningSearch   = (foldl .) \relation st@(visited, setSequence) vertex ->
  if vertex `elem` visited then st else second ((:setSequence) . (vertex:))
    $ depthFirstSearch relation (vertex:visited, []) (relation vertex)

scc ins outs = spanning . depthFirst where
  depthFirst = snd . depthFirstSearch outs ([], [])
  spanning   = snd . spanningSearch   ins  ([], [])
-- FFI across multiple modules.
-- Rewrite with named fields.
-- Fix fixities after parsing.
module Parser where
import Base
import Ast
import Map

-- Parser.
data ParserState = ParserState
  { readme :: [(Char, (Int, Int))]
  , landin :: String
  , indents :: [Int]
  }
data Parser a = Parser { getParser :: ParserState -> Either String (a, ParserState) }
instance Functor Parser where fmap f x = pure f <*> x
instance Applicative Parser where
  pure x = Parser \inp -> Right (x, inp)
  (Parser f) <*> (Parser x) = Parser \inp -> do
    (fun, t) <- f inp
    (arg, u) <- x t
    pure (fun arg, u)
instance Monad Parser where
  return = pure
  (Parser x) >>= f = Parser \inp -> do
    (a, t) <- x inp
    getParser (f a) t
instance Alternative Parser where
  empty = bad ""
  x <|> y = Parser \inp -> either (const $ getParser y inp) Right $ getParser x inp

notFollowedBy p = do
  saved <- Parser \pasta -> Right (pasta, pasta)
  ret <- p *> pure (bad "") <|> pure (pure ())
  Parser \_ -> Right ((), saved)
  ret

parse f str = getParser f $ ParserState (rowcol str (1, 1)) [] [] where
  rowcol s rc = case s of
    [] -> []
    h:t -> (h, rc) : rowcol t (advanceRC (ord h) rc)
  advanceRC n (r, c)
    | n `elem` [10, 11, 12, 13] = (r + 1, 1)
    | n == 9 = (r, (c + 8)`mod`8)
    | True = (r, c + 1)

indentOf pasta = case readme pasta of
  [] -> 1
  (_, (_, c)):_ -> c

ins c pasta = pasta { landin = c:landin pasta }

angle n pasta = case indents pasta of
  m:ms | m == n -> ins ';' pasta
       | n + 1 <= m -> ins '}' $ angle n pasta { indents = ms }
  _ -> pasta

curly n pasta = case indents pasta of
  m:ms | m + 1 <= n -> ins '{' pasta { indents = n:m:ms }
  [] | 1 <= n -> ins '{' pasta { indents = [n] }
  _ -> ins '{' . ins '}' $ angle n pasta

sat f = Parser \pasta -> case landin pasta of
  c:t -> if f c then Right (c, pasta { landin = t }) else Left "unsat"
  [] -> case readme pasta of
    [] -> case indents pasta of
      [] -> Left "EOF"
      m:ms | m /= 0 && f '}' -> Right ('}', pasta { indents = ms })
      _ -> Left "unsat"
    (h, _):t | f h -> let
      p' = pasta { readme = t }
      in case h of
        '}' -> case indents pasta of
          0:ms -> Right (h, p' { indents = ms })
          _ -> Left "unsat"
        '{' -> Right (h, p' { indents = 0:indents p' })
        _ -> Right (h, p')
    _ -> Left "unsat"

char c = sat (c ==)

rawSat f = Parser \pasta -> case readme pasta of
  [] -> Left "EOF"
  (h, _):t -> if f h then Right (h, pasta { readme = t }) else Left "unsat"

eof = Parser \pasta -> case pasta of
  ParserState [] [] _ -> Right ((), pasta)
  _ -> badpos pasta "want eof"

comment = rawSat ('-' ==) *> some (rawSat ('-' ==)) *>
  (rawSat isNewline <|> rawSat (not . isSymbol) *> many (rawSat $ not . isNewline) *> rawSat isNewline) *> pure True
spaces = isNewline <$> rawSat isSpace
whitespace = do
  offside <- or <$> many (spaces <|> comment)
  Parser \pasta -> Right ((), if offside then angle (indentOf pasta) pasta else pasta)

hexValue d
  | d <= '9' = ord d - ord '0'
  | d <= 'F' = 10 + ord d - ord 'A'
  | d <= 'f' = 10 + ord d - ord 'a'
isNewline c = ord c `elem` [10, 11, 12, 13]
isSymbol = (`elem` "!#$%&*+./<=>?@\\^|-~:")
isSmall c = c <= 'z' && 'a' <= c || c == '_'
small = sat isSmall
large = sat \x -> (x <= 'Z') && ('A' <= x)
hexit = sat \x -> (x <= '9') && ('0' <= x)
  || (x <= 'F') && ('A' <= x)
  || (x <= 'f') && ('a' <= x)
digit = sat \x -> (x <= '9') && ('0' <= x)
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> some digit
hexadecimal = foldl (\n d -> 16*n + hexValue d) 0 <$> some hexit
nameTailChar = small <|> large <|> digit <|> char '\''
nameTailed p = liftA2 (:) p $ many nameTailChar

escape = char '\\' *> (sat (`elem` "'\"\\") <|> char 'n' *> pure '\n' <|> char '0' *> pure (chr 0) <|> char 'x' *> (chr <$> hexadecimal))
tokOne delim = escape <|> rawSat (delim /=)

charSeq = mapM char
tokChar = between (char '\'') (char '\'') (tokOne '\'')
quoteStr = between (char '"') (char '"') $ many $ many (charSeq "\\&") *> tokOne '"'
quasiquoteStr = charSeq "[r|" *> quasiquoteBody
quasiquoteBody = charSeq "|]" *> pure [] <|> (:) <$> rawSat (const True) <*> quasiquoteBody
tokStr = quoteStr <|> quasiquoteStr
integer = char '0' *> (char 'x' <|> char 'X') *> hexadecimal <|> decimal
literal = lexeme . fmap E $ Const <$> integer <|> ChrCon <$> tokChar <|> StrCon <$> tokStr
varish = lexeme $ nameTailed small
bad s = Parser \pasta -> badpos pasta s
badpos pasta s = Left $ loc $ ": " ++ s where
  loc = case readme pasta of
    [] -> ("EOF"++)
    (_, (r, c)):_ -> ("row "++) . shows r . (" col "++) . shows c
varId = do
  s <- varish
  if elem s
    ["export", "case", "class", "data", "default", "deriving", "do", "else", "foreign", "if", "import", "in", "infix", "infixl", "infixr", "instance", "let", "module", "newtype", "of", "then", "type", "where", "_"]
    then bad $ "reserved: " ++ s else pure s
varSymish = lexeme $ (:) <$> sat (\c -> isSymbol c && c /= ':') <*> many (sat isSymbol)
varSym = lexeme $ do
  s <- varSymish
  if elem s ["..", "=", "\\", "|", "<-", "->", "@", "~", "=>"] then bad $ "reserved: " ++ s else pure s

conId = lexeme $ nameTailed large
conSymish = lexeme $ liftA2 (:) (char ':') $ many $ sat isSymbol
conSym = do
  s <- conSymish
  if elem s [":", "::"] then bad $ "reserved: " ++ s else pure s
special c = lexeme $ sat (c ==)
comma = special ','
semicolon = special ';'
lParen = special '('
rParen = special ')'
lBrace = special '{'
rBrace = special '}'
lSquare = special '['
rSquare = special ']'
backquote = special '`'

lexeme f = f <* whitespace

lexemePrelude = whitespace *>
  Parser \pasta -> case getParser (res "module" <|> (:[]) <$> char '{') pasta of
    Left _ -> Right ((), curly (indentOf pasta) pasta)
    Right _ -> Right ((), pasta)

curlyCheck f = do
  Parser \pasta -> Right ((), pasta { indents = 0:indents pasta })
  r <- f
  Parser \pasta -> let pasta' = pasta { indents = tail $ indents pasta } in case readme pasta of
    []              -> Right ((), curly 0 pasta')
    ('{', _):_      -> Right ((), pasta')
    (_, (_, col)):_ -> Right ((), curly col pasta')
  pure r

conOf (Constr s _) = s
specialCase (h:_) = '|':conOf h
mkCase t cs = (specialCase cs,
  ( Qual [] $ arr t $ foldr arr (TV "case") $ map (\(Constr _ sts) -> foldr arr (TV "case") $ snd <$> sts) cs
  , E $ Basic "I"))
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", [])
scottEncode _ ":" _ = E $ Basic "CONS"
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs)
scottConstr t cs (Constr s sts) = (s,
  (Qual [] $ foldr arr t ts , scottEncode (map conOf cs) s $ mkStrs ts))
  : [(field, (Qual [] $ t `arr` ft, L s $ foldl A (V s) $ inj $ proj field)) | (field, ft) <- sts, field /= ""]
  where
  ts = snd <$> sts
  proj fd = foldr L (V fd) $ fst <$> sts
  inj x = map (\(Constr s' _) -> if s' == s then x else V "undefined") cs
mkAdtDefs t cs = mkCase t cs : concatMap (scottConstr t cs) cs

mkFFIHelper n t acc = case t of
  TC s -> acc
  TAp (TC "IO") _ -> acc
  TAp (TAp (TC "->") x) y -> L (show n) $ mkFFIHelper (n + 1) y $ A (V $ show n) acc

updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs
addAdt t cs ders neat = foldr derive neat' ders where
  neat' = neat
    { typedAsts = mkAdtDefs t cs ++ typedAsts neat
    , dataCons = updateDcs cs $ dataCons neat
    }
  derive "Eq" = addInstance "Eq" (mkPreds "Eq") t
    [("==", Pa $ map eqCase cs
    )]
  derive "Show" = addInstance "Show" (mkPreds "Show") t
    [("showsPrec", L "prec" $ Pa $ map showCase cs
    )]
  derive der = error $ "bad deriving: " ++ der
  prec0 = E $ Const 0
  showCase (Constr con args) = let as = show <$> [1..length args]
    in ([PatCon con $ mkPatVar "" <$> as], case args of
      [] -> A (V "++") (E $ StrCon con)
      _ -> case con of
        ':':_ -> A (A (V "showParen") $ V "True") $ foldr1
          (\f g -> A (A (V ".") f) g)
          [ A (A (V "showsPrec") prec0) (V "1")
          , A (V "++") (E $ StrCon $ ' ':con++" ")
          , A (A (V "showsPrec") prec0) (V "2")
          ]
        _ -> A (A (V "showParen") $ A (A (V "<=") prec0) $ V "prec")
          $ A (A (V ".") $ A (V "++") (E $ StrCon con))
          $ foldr (\f g -> A (A (V ".") f) g) (L "x" $ V "x")
          $ map (\a -> A (A (V ".") (A (V ":") (E $ ChrCon ' '))) $ A (A (V "showsPrec") prec0) (V a)) as
      )
  mkPreds classId = Pred classId . TV <$> typeVars t
  mkPatVar pre s = PatVar (pre ++ s) Nothing
  eqCase (Constr con args) = let as = show <$> [1..length args]
    in ([PatCon con $ mkPatVar "l" <$> as], Pa
      [ ([PatCon con $ mkPatVar "r" <$> as], foldr (\x y -> (A (A (V "&&") x) y)) (V "True")
         $ map (\n -> A (A (V "==") (V $ "l" ++ n)) (V $ "r" ++ n)) as)
      , ([PatVar "_" Nothing], V "False")])

addClass classId v (sigs, defs) neat = if not $ member classId $ typeclasses neat then neat
  { typeclasses = insert classId (keys sigs) $ typeclasses neat
  , typedAsts = selectors ++ typedAsts neat
  , topDefs = defaults ++ topDefs neat
  } else error $ "duplicate class: " ++ classId
  where
  vars = take (size sigs) $ show <$> [0..]
  selectors = zipWith (\var (s, t) -> (s, (Qual [Pred classId v] t,
    L "@" $ A (V "@") $ foldr L (V var) vars))) vars $ toAscList sigs
  defaults = map (\(s, t) -> if member s sigs then ("{default}" ++ s, t) else error $ "bad default method: " ++ s) $ toAscList defs

addInstance classId ps ty ds neat = neat
  { instances = insertWith (++) classId [Instance ty name ps (fromList ds)] $ instances neat
  } where
  name = '{':classId ++ (' ':shows ty "}")

addForeignImport foreignname ourname t neat = let ffis = ffiImports neat in neat
  { typedAsts = (ourname, (Qual [] t, mkFFIHelper 0 t $ A (E $ Basic "F") $ A (E $ Basic "NUM") $ E $ Link "{foreign}" foreignname $ Qual [] t)) : typedAsts neat
  , ffiImports = insertWith (error $ "duplicate import: " ++ foreignname) foreignname t ffis
  }
addForeignExport e f neat = neat { ffiExports = insertWith (error $ "duplicate export: " ++ e) e f $ ffiExports neat }
addDefs ds neat = neat { topDefs = ds ++ topDefs neat }
addImport im neat = neat { moduleImports = im:moduleImports neat }
addFixities os prec neat = neat { opFixity = foldr (\o tab -> insert o prec tab) (opFixity neat) os }

parseErrorRule = Parser \pasta -> case indents pasta of
  m:ms | m /= 0 -> Right ('}', pasta { indents = ms })
  _ -> badpos pasta "missing }"

res w@(h:_) = reservedSeq *> pure w <|> bad ("want \"" ++ w ++ "\"") where
  reservedSeq = if elem w ["let", "where", "do", "of"]
    then curlyCheck $ lexeme $ charSeq w *> notFollowedBy nameTailChar
    else lexeme $ charSeq w *> notFollowedBy (if isSmall h then nameTailChar else sat isSymbol)

paren = between lParen rParen
braceSep f = between lBrace (rBrace <|> parseErrorRule) $ foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) semicolon

maybeFix s x = if elem s $ fvPro [] x then A (V "fix") (L s x) else x

nonemptyTails [] = []
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt

joinIsFail t = A (L "join#" t) (V "fail#")

addLets ls x = foldr triangle x components where
  vs = fst <$> ls
  ios = foldr (\(s, dsts) (ins, outs) ->
    (foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
    (Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
  components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
  triangle names expr = let
    tnames = nonemptyTails names
    appem vs = foldl1 A $ V <$> vs
    suball expr = foldl A (foldr L expr $ init names) $ appem <$> init tnames
    redef tns expr = foldr L (suball expr) tns
    in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ redef xt $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames

qconop = conSym <|> res ":" <|> between backquote backquote conId

qconsym = conSym <|> res ":"

op = qconsym <|> varSym <|> between backquote backquote (conId <|> varId)
con = conId <|> paren qconsym
var = varId <|> paren varSym

tycon = do
  s <- conId
  pure $ if s == "String" then TAp (TC "[]") (TC "Char") else TC s

aType =
  lParen *>
    (   rParen *> pure (TC "()")
    <|> (foldr1 (TAp . TAp (TC ",")) <$> sepBy1 _type comma) <* rParen)
  <|> tycon
  <|> TV <$> varId
  <|> (lSquare *> (rSquare *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* rSquare)))
bType = foldl1 TAp <$> some aType
_type = foldr1 arr <$> sepBy bType (res "->")

fixityDecl w a = do
  res w
  n <- lexeme integer
  os <- sepBy op comma
  pure $ addFixities os (n, a)

fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc

cDecls = first fromList . second fromList . foldr ($) ([], []) <$> braceSep cDecl
cDecl = first . (:) <$> genDecl <|> second . (++) <$> defSemi

genDecl = (,) <$> var <*> (res "::" *> _type)

classDecl = res "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (res "where" *> cDecls))

simpleClass = Pred <$> conId <*> _type
scontext = (:[]) <$> simpleClass <|> paren (sepBy simpleClass comma)

instDecl = res "instance" *>
  ((\ps cl ty defs -> addInstance cl ps ty defs) <$>
  (scontext <* res "=>" <|> pure [])
    <*> conId <*> _type <*> (res "where" *> braceDef))

letin = addLets <$> between (res "let") (res "in") braceDef <*> expr
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
  (res "if" *> expr) <*> (res "then" *> expr) <*> (res "else" *> expr)
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]")

alts = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->")
cas = flip A <$> between (res "case") (res "of") expr <*> alts
lamCase = curlyCheck (res "case") *> alts
lam = res "\\" *> (lamCase <|> liftA2 onePat (some apat) (res "->" *> expr))

flipPairize y x = A (A (V ",") x) y
moreCommas = foldr1 (A . A (V ",")) <$> sepBy1 expr comma
thenComma = comma *> ((flipPairize <$> moreCommas) <|> pure (A (V ",")))
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id)
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (:"") <$> comma)) <*> expr
section = lParen *> (parenExpr <* rParen <|> rightSect <* rParen <|> rParen *> pure (V "()"))

maybePureUnit = maybe (V "pure" `A` V "()") id
stmt = (\p x -> Just . A (V ">>=" `A` x) . onePat [p] . maybePureUnit) <$> pat <*> (res "<-" *> expr)
  <|> (\x -> Just . maybe x (\y -> (V ">>=" `A` x) `A` (L "_" y))) <$> expr
  <|> (\ds -> Just . addLets ds . maybePureUnit) <$> (res "let" *> braceDef)
doblock = res "do" *> (maybePureUnit . foldr ($) Nothing <$> braceSep stmt)

compQual =
  (\p xs e -> A (A (V "concatMap") $ onePat [p] e) xs)
    <$> pat <*> (res "<-" *> expr)
  <|> (\b e -> A (A (A (V "if") b) e) $ V "[]") <$> expr
  <|> addLets <$> (res "let" *> braceDef)

sqExpr = between lSquare rSquare $
  ((&) <$> expr <*>
    (   res ".." *>
      (   (\hi lo -> (A (A (V "enumFromTo") lo) hi)) <$> expr
      <|> pure (A (V "enumFrom"))
      )
    <|> res "|" *>
      ((. A (V "pure")) . foldr (.) id <$> sepBy1 compQual comma)
    <|> (\t h -> listify (h:t)) <$> many (comma *> expr)
    )
  )
  <|> pure (V "[]")

fbind = A <$> (V <$> var) <*> (res "=" *> expr)

fBinds v = (do
    fbs <- between lBrace rBrace $ sepBy1 fbind comma
    pure $ A (E $ Basic "{=") $ foldr A (E $ Basic "=}") $ v:fbs
  ) <|> pure v

atom = ifthenelse <|> doblock <|> letin <|> sqExpr <|> section
  <|> cas <|> lam <|> (paren comma *> pure (V ","))
  <|> V <$> (con <|> var) <|> literal
  >>= fBinds

aexp = foldl1 A <$> some atom

chain a = \case
  [] -> a
  A f b:rest -> case rest of
    [] -> A (A f a) b
    _ -> L "(" $ A (A (A f a) b) $ foldr A (V ")") rest
  _ -> error "unreachable"
expr = chain <$> aexp <*> many (A <$> (V <$> op) <*> aexp)

gcon = conId <|> paren (qconsym <|> (:"") <$> comma) <|> (lSquare *> rSquare *> pure "[]")

apat = PatVar <$> var <*> (res "@" *> (Just <$> apat) <|> pure Nothing)
  <|> flip PatVar Nothing <$> (res "_" *> pure "_")
  <|> flip PatCon [] <$> gcon
  <|> PatLit <$> literal
  <|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" [])
    <$> between lSquare rSquare (sepBy pat comma)
  <|> paren (foldr1 pairPat <$> sepBy1 pat comma <|> pure (PatCon "()" []))
  where pairPat x y = PatCon "," [x, y]

patChain a = \case
  [] -> a
  PatCon f [b]:rest -> case rest of
    [] -> PatCon f [a, b]
    _ -> PatCon "{+" $ PatCon f [a, b] : rest
  _ -> error "unreachable"
patAtom = PatCon <$> gcon <*> many apat <|> apat
pat = patChain <$> patAtom <*> many (PatCon <$> qconop <*> ((:[]) <$> patAtom))

maybeWhere p = (&) <$> p <*> (res "where" *> (addLets <$> braceDef) <|> pure id)

guards s = maybeWhere $ res s *> expr <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
  V "True" -> \_ -> y
  _ -> A (A (A (V "if") x) y)
  ) <$> (res "|" *> expr) <*> (res s *> expr))

onePat vs x = joinIsFail $ Pa [(vs, x)]
defOnePat vs x = Pa [(vs, x)]
opDef x f y rhs = [(f, defOnePat [x, y] rhs)]
leftyPat p expr = case pvars of
  [] -> []
  (h:t) -> let gen = '@':h in
    (gen, expr):map (\v -> (v, A (Pa [([p], V v)]) $ V gen)) pvars
  where
  pvars = filter (/= "_") $ patVars p
def = liftA2 (\l r -> [(l, r)]) var (liftA2 defOnePat (many apat) $ guards "=")
  <|> (pat >>= \x -> opDef x <$> varSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=")
coalesce = \case
  [] -> []
  h@(s, x):t -> case t of
    [] -> [h]
    (s', x'):t' -> let
      f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
      f _ _ = error "bad multidef"
      in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
defSemi = coalesce . concat <$> sepBy1 def (some semicolon)
braceDef = concat <$> braceSep defSemi

simpleType c vs = foldl TAp (TC c) (map TV vs)
conop = conSym <|> between backquote backquote conId
fieldDecl = (\vs t -> map (, t) vs) <$> sepBy1 var comma <*> (res "::" *> _type)
constr = (\x c y -> Constr c [("", x), ("", y)]) <$> aType <*> conop <*> aType
  <|> Constr <$> conId <*>
    (   concat <$> between lBrace rBrace (fieldDecl `sepBy` comma)
    <|> map ("",) <$> many aType)
dclass = conId
_deriving = (res "deriving" *> ((:[]) <$> dclass <|> paren (dclass `sepBy` comma))) <|> pure []
adt = addAdt <$> between (res "data") (res "=") (simpleType <$> conId <*> many varId) <*> sepBy constr (res "|") <*> _deriving

impDecl = addImport <$> (res "import" *> conId)

topdecls = braceSep
  $   adt
  <|> classDecl
  <|> instDecl
  <|> res "foreign" *>
    (   res "import" *> var *> (addForeignImport <$> lexeme tokStr <*> var <*> (res "::" *> _type))
    <|> res "export" *> var *> (addForeignExport <$> lexeme tokStr <*> var)
    )
  <|> addDefs <$> defSemi
  <|> fixity
  <|> impDecl

haskell = between lexemePrelude eof $ some $ (,) <$> (res "module" *> conId <* res "where" <|> pure "Main") <*> topdecls

parseProgram s = fst <$> parse haskell s
-- FFI across multiple modules.
module Typer where

import Base
import Map
import Ast
import Parser
import Unify

app01 s x y = maybe (A (L s x) y) snd $ go x where
  go expr = case expr of
    E _ -> Just (False, expr)
    V v -> Just $ if s == v then (True, y) else (False, expr)
    A l r -> do
      (a, l') <- go l
      (b, r') <- go r
      if a && b then Nothing else pure (a || b, A l' r')
    L v t -> if v == s then Just (False, expr) else second (L v) <$> go t

optiApp t = case t of
  A x y -> let
    x' = optiApp x
    y' = optiApp y
    in case x' of
      L s v -> app01 s v y'
      _ -> A x' y'
  L s x -> L s (optiApp x)
  _ -> t

-- Pattern compiler.
findCon dcs s = foldr (<|>) Nothing $ mlookup s <$> dcs

rewritePats dcs = \case
  [] -> pure $ V "join#"
  vsxs@((as0, _):_) -> case as0 of
    [] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
    _ -> do
      let k = length as0
      n <- get
      put $ n + k
      let vs = take k $ (`shows` "#") <$> [n..]
      cs <- flip mapM vsxs \(a:at, x) -> (a,) <$> foldM (\b (p, v) -> rewriteCase dcs v Tip [(p, b)]) x (zip at $ tail vs)
      flip (foldr L) vs <$> rewriteCase dcs (head vs) Tip cs

patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y

rewriteCase dcs caseVar tab = \case
  [] -> flush $ V "join#"
  ((v, x):rest) -> go v x rest
  where
  rec = rewriteCase dcs caseVar
  go v x rest = case v of
    PatLit lit -> flush =<< patEq lit (V caseVar) x <$> rec Tip rest
    PatVar s m -> let x' = beta s (V caseVar) x in case m of
      Nothing -> flush =<< A (L "join#" x') <$> rec Tip rest
      Just v' -> go v' x' rest
    PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
  flush onFail = case toAscList tab of
    [] -> pure onFail
    -- TODO: Check rest of `tab` lies in cs.
    (firstC, _):_ -> do
      let cs = maybe undefined id $ findCon dcs firstC
      jumpTable <- mapM (\(Constr s ts) -> case mlookup s tab of
          Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
          Just f -> rewritePats dcs $ f []
        ) cs
      pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail

findField dcs f = case [(con, fields) | tab <- dcs, (_, cons) <- toAscList tab, Constr con fields <- cons, (f', _) <- fields, f == f'] of
  [] -> error $ "no such field: " ++ f
  h:_ -> h

resolveFieldBinds dcs t = go t where
  go t = case t of
    E _ -> t
    V _ -> t
    A (E (Basic "{=")) (A rawExpr fbsAst) -> let
      expr = go rawExpr
      fromAst t = case t of
        A (A (V f) body) rest -> (f, go body):fromAst rest
        E (Basic "=}") -> []
      fbs@((firstField, _):_) = fromAst fbsAst
      (con, fields) = findField dcs firstField
      cs = maybe undefined id $ findCon dcs con
      newValue = foldl A (V con) [maybe (V $ "[old]"++f) id $ lookup f fbs | (f, _) <- fields]
      initValue = foldl A expr [maybe (V "undefined") id $ lookup f fbs | (f, _) <- fields]
      updater = foldr L newValue $ ("[old]"++) . fst <$> fields
      inj x = map (\(Constr con' _) -> if con' == con then x else V "undefined") cs
      allPresent = all (`elem` (fst <$> fields)) $ fst <$> fbs
      isCon = case expr of
        V (h:_) -> 'A' <= h && h <= 'Z'
        _ -> False
      in if allPresent
        then if isCon then initValue else foldl A (A (V $ specialCase cs) expr) $ inj updater
        else error "bad fields in update"
    A x y -> A (go x) (go y)
    L s x -> L s $ go x

fixFixity precs t = case t of
  E _ -> t
  V _ -> t
  A x y -> A (go x) (go y)
  L s b
    | s == "(" -> infixer precs $ go b
    | True -> L s $ go b
  Pa vsxs -> Pa $ map (\(ps, a) -> (pgo <$> ps, go a)) vsxs
  where
  go = fixFixity precs
  pgo = patFixFixity precs

data OpTree = OpLeaf Ast | OpNode String Ast OpTree

infixer precs (A (A (A (V s) x) y) t) = go (OpNode s x (OpLeaf y)) t
  where
  go acc = \case
    A (A (V s) z) rest -> go (ins s z acc) rest
    V ")" -> decode acc
    _ -> error "unreachable"
  ins s z t = case t of
    OpNode s' x y
      | isStronger precs s s' -> OpNode s' x (ins s z y)
      | True -> OpNode s (decode t) (OpLeaf z)
    OpLeaf x -> OpNode s x (OpLeaf z)
  decode = \case
    OpNode f x y -> A (A (V f) x) (decode y)
    OpLeaf x -> x

isStronger precs s s' = if prec <= prec'
  then if prec == prec'
    then if assoc == assoc'
      then case assoc of
        LAssoc -> False
        RAssoc -> True
        NAssoc -> error $ "adjacent NAssoc: " ++ s ++ " vs " ++ s'
      else error $ "assoc mismatch: " ++ s ++ " vs " ++ s'
    else False
  else True
  where
  (prec, assoc) = findPrec s
  (prec', assoc') = findPrec s'
  findPrec s = if s == ":" then (5, RAssoc) else maybe defPrec id $ mlookup s precs
  defPrec = (9, LAssoc)

patFixFixity precs p = case p of
  PatLit _ -> p
  PatVar s m -> PatVar s $ go <$> m
  PatCon "{+" args -> patFixer precs args
  PatCon con args -> PatCon con $ go <$> args
  where
  go = patFixFixity precs

data PopTree = PopLeaf Pat | PopNode String Pat PopTree

patFixer precs (PatCon f [a, b]:rest) = go seed rest where
  seed = PopNode f a (PopLeaf b)
  go acc = \case
    [] -> decode acc
    PatCon s [z]:rest -> go (ins s z acc) rest
  ins s z t = case t of
    PopNode s' x y -> case isStronger precs s s' of
      True -> PopNode s' x $ ins s z y
      False -> PopNode s (decode t) (PopLeaf z)
    PopLeaf x -> PopNode s x (PopLeaf z)
  decode = \case
    PopNode f x y -> PatCon f [x, decode y]
    PopLeaf x -> x

secondM f (a, b) = (a,) <$> f b
patternCompile dcs t = optiApp $ resolveFieldBinds dcs $ evalState (go t) 0 where
  go t = case t of
    E _ -> pure t
    V _ -> pure t
    A x y -> liftA2 A (go x) (go y)
    L s x -> L s <$> go x
    Pa vsxs -> mapM (secondM go) vsxs >>= rewritePats dcs

-- Type inference.
instantiate' t n tab = case t of
  TC s -> ((t, n), tab)
  TV s -> case lookup s tab of
    Nothing -> let va = TV $ show n in ((va, n + 1), (s, va):tab)
    Just v -> ((v, n), tab)
  TAp x y -> let
    ((t1, n1), tab1) = instantiate' x n tab
    ((t2, n2), tab2) = instantiate' y n1 tab1
    in ((TAp t1 t2, n2), tab2)

instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab)

instantiate (Qual ps t) n = first (Qual ps1) $ fst $ instantiate' t n1 tab where
  ((ps1, n1), tab) = foldr instantiatePred (([], n), []) ps

proofApply sub a = case a of
  Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
  A x y -> A (proofApply sub x) (proofApply sub y)
  L s t -> L s $ proofApply sub t
  _ -> a

typeAstSub sub (t, a) = (apply sub t, proofApply sub a)

infer typed loc ast csn@(cs, n) = case ast of
  E x -> Right $ case x of
    Const _ -> ((TC "Int", ast), csn)
    ChrCon _ -> ((TC "Char", ast), csn)
    StrCon _ -> ((TAp (TC "[]") (TC "Char"), ast), csn)
    Link im s q -> insta q
  V s -> maybe (Left $ "undefined: " ++ s) Right
    $ (\t -> ((t, ast), csn)) <$> lookup s loc
    <|> insta . fst <$> mlookup s typed
  A x y -> infer typed loc x (cs, n + 1) >>=
    \((tx, ax), csn1) -> infer typed loc y csn1 >>=
    \((ty, ay), (cs2, n2)) -> unify tx (arr ty va) cs2 >>=
    \cs -> Right ((va, A ax ay), (cs, n2))
  L s x -> first (\(t, a) -> (arr va t, L s a)) <$> infer typed ((s, va):loc) x (cs, n + 1)
  where
  va = TV $ show n
  insta ty = ((ty1, foldl A ast (map Proof preds)), (cs, n1))
    where (Qual preds ty1, n1) = instantiate ty n

findInstance tycl qn@(q, n) p@(Pred cl ty) insts = case insts of
  [] -> let v = '*':show n in Right (((p, v):q, n + 1), V v)
  (modName, Instance h name ps _):rest -> case match h ty of
    Nothing -> findInstance tycl qn p rest
    Just subs -> foldM (\(qn1, t) (Pred cl1 ty1) -> second (A t)
      <$> findProof tycl (Pred cl1 $ apply subs ty1) qn1) (qn, if modName == "" then V name else E $ Link modName name undefined) ps

findProof tycl pred@(Pred classId t) psn@(ps, n) = case lookup pred ps of
  Nothing -> findInstance tycl psn pred $ tycl classId
  Just s -> Right (psn, V s)

prove tycl psn a = case a of
  Proof pred -> findProof tycl pred psn
  A x y -> prove tycl psn x >>= \(psn1, x1) ->
    second (A x1) <$> prove tycl psn1 y
  L s t -> second (L s) <$> prove tycl psn t
  _ -> Right (psn, a)

data Dep a = Dep ([String] -> Either String ([String], a))
instance Functor Dep where
  fmap f = \(Dep mf) -> Dep \g -> do
    (g', x) <- mf g
    pure (g', f x)
instance Applicative Dep where
  pure x = Dep \g -> Right (g, x)
  (Dep mf) <*> (Dep mx) = Dep \g -> do
    (g', f) <- mf g
    (g'', x) <- mx g'
    pure (g'', f x)
addDep s = Dep \deps -> Right (if s `elem` deps then deps else s : deps, ())
badDep s = Dep $ const $ Left s
runDep (Dep f) = f []

astLink typed locals imps mods ast = runDep $ go [] ast where
  go bound ast = case ast of
    V s
      | elem s bound -> pure ast
      | member s locals -> case findImportSym imps mods s of
        [] -> (if member s typed then pure () else addDep s) *> pure ast
        _ -> badDep $ "ambiguous: " ++ s
      | True -> case findImportSym imps mods s of
        [] -> badDep $ "missing: " ++ s
        [(im, t)] -> pure $ E $ Link im s t
        _ -> badDep $ "ambiguous: " ++ s
    A x y -> A <$> go bound x <*> go bound y
    L s t -> L s <$> go (s:bound) t
    _ -> pure ast

forFree cond f bound t = case t of
  E _ -> t
  V s -> if (not $ s `elem` bound) && cond s then f t else t
  A x y -> A (rec bound x) (rec bound y)
  L s t' -> L s $ rec (s:bound) t'
  where rec = forFree cond f

inferno tycl typed defmap syms = let
  loc = zip syms $ TV . (' ':) <$> syms
  principal (acc, (subs, n)) s = do
    expr <- maybe (Left $ "missing: " ++ s) Right (mlookup s defmap)
    ((t, a), (ms, n1)) <- infer typed loc expr (subs, n)
    cs <- unify (TV (' ':s)) t ms
    Right ((s, (t, a)):acc, (cs, n1))
  gatherPreds (acc, psn) (s, (t, a)) = do
    (psn, a) <- prove tycl psn a
    pure ((s, (t, a)):acc, psn)
  in do
    (stas, (soln, _)) <- foldM principal ([], (Tip, 0)) syms
    stas <- pure $ second (typeAstSub soln) <$> stas
    (stas, (ps, _)) <- foldM gatherPreds ([], ([], 0)) $ second (typeAstSub soln) <$> stas
    let
      preds = fst <$> ps
      dicts = snd <$> ps
      applyDicts (s, (t, a)) = (s, (Qual preds t,
        foldr L (forFree (`elem` syms) (\t -> foldl A t $ V <$> dicts) [] a) dicts))
    pure $ map applyDicts stas

findImportSym imps mods s = concat [maybe [] (\(t, _) -> [(im, t)]) $ mlookup s qas | im <- imps, let qas = fst $ mods ! im]

inferDefs tycl defs typed = do
  let
    insertUnique m (s, (_, t)) = case mlookup s m of
      Nothing -> case mlookup s typed of
        Nothing -> Right $ insert s t m
        _ -> Left $ "reserved: " ++ s
      _ -> Left $ "duplicate: " ++ s
    addEdges (sym, (deps, _)) (ins, outs) = (foldr (\dep es -> insertWith union dep [sym] es) ins deps, insertWith union sym deps outs)
    graph = foldr addEdges (Tip, Tip) defs
  defmap <- foldM insertUnique Tip defs
  let
    ins k = maybe [] id $ mlookup k $ fst graph
    outs k = maybe [] id $ mlookup k $ snd graph
    inferComponent typed syms = foldr (uncurry insert) typed <$> inferno tycl typed defmap syms
  foldM inferComponent typed $ scc ins outs $ keys defmap

dictVars ps n = (zip ps $ map (('*':) . show) [n..], n + length ps)

inferTypeclasses tycl typeOfMethod typed dcs precs linker iMap mergedSigs = foldM inferInstance typed [(classId, inst) | (classId, insts) <- toAscList iMap, inst <- insts] where
  inferInstance typed (classId, Instance ty name ps idefs) = let
    dvs = map snd $ fst $ dictVars ps 0
    perMethod s = do
      let rawExpr = maybe (V $ "{default}" ++ s) id $ mlookup s idefs
      expr <- snd <$> linker (patternCompile dcs $ fixFixity precs rawExpr)
      (ta, (sub, n)) <- either (Left . (name++) . (" "++) . (s++) . (": "++)) Right
        $ infer typed [] expr (Tip, 0)
      let
        (tx, ax) = typeAstSub sub ta
-- e.g. qc = Eq a => a -> a -> Bool
-- We instantiate: Eq a1 => a1 -> a1 -> Bool.
        qc = typeOfMethod s
        (Qual [Pred _ headT] tc, n1) = instantiate qc n
-- Mix the predicates `ps` with the type of `headT`, applying a
-- substitution such as (a1, [a]) so the variable names match.
-- e.g. Eq a => [a] -> [a] -> Bool
        Just subc = match headT ty
        (Qual ps2 t2, n2) = instantiate (Qual ps $ apply subc tc) n1
      case match tx t2 of
        Nothing -> Left "class/instance type conflict"
        Just subx -> do
          ((ps3, _), tr) <- prove tycl (dictVars ps2 0) (proofApply subx ax)
          if length ps2 /= length ps3
            then Left $ ("want context: "++) . (foldr (.) id $ shows . fst <$> ps3) $ name
            else pure tr
    in do
      ms <- mapM perMethod $ maybe (error $ "missing class: " ++ classId) id $ mlookup classId mergedSigs
      pure $ insert name (Qual [] $ TC "DICTIONARY", flip (foldr L) dvs $ L "@" $ foldl A (V "@") ms) typed

primAdts =
  [ (TC "()", [Constr "()" []])
  , (TC "Bool", [Constr "True" [], Constr "False" []])
  , (TAp (TC "[]") (TV "a"), [Constr "[]" [], Constr ":" $ map ("",) [TV "a", TAp (TC "[]") (TV "a")]])
  , (TAp (TAp (TC ",") (TV "a")) (TV "b"), [Constr "," $ map ("",) [TV "a", TV "b"]])
  ]

prims = let
  ro = E . Basic
  dyad s = TC s `arr` (TC s `arr` TC s)
  bin s = A (ro "Q") (ro s)
  in map (second (first $ Qual [])) $
    [ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
    , ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
    , ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
    , ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
    , ("fix", (arr (arr (TV "a") (TV "a")) (TV "a"), ro "Y"))
    , ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
    , ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
    , ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
    , ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
    , ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro "V"))
    , ("primitiveError", (arr (TAp (TC "[]") (TC "Char")) (TV "a"), ro "ERR"))
    , ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))), ro "NEWREF"))
    , ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
      A (ro "T") (ro "READREF")))
    , ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
      A (A (ro "R") (ro "WRITEREF")) (ro "B")))
    , ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
    , ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
    , ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    , ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    ]
    ++ map (\(s, v) -> (s, (dyad "Int", bin v)))
      [ ("intAdd", "ADD")
      , ("intSub", "SUB")
      , ("intMul", "MUL")
      , ("intDiv", "DIV")
      , ("intMod", "MOD")
      , ("intQuot", "QUOT")
      , ("intRem", "REM")
      , ("intXor", "XOR")
      , ("intAnd", "AND")
      , ("intOr", "OR")
      ]

tabulateModules mods = snd <$> foldM ins (Tip, Tip) mods where
  go precs = foldr ($) neatEmpty{moduleImports = ["#"], opFixity = precs}
  ins (accprecs, tab) (k, prog) = case mlookup k tab of
    Nothing -> let v = go accprecs prog in Right (opFixity v, insert k v tab)
    Just _ -> Left $ "duplicate module: " ++ k

slowUnionWith f x y = foldr go x $ toAscList y where go (k, v) m = insertWith f k v m

inferModule tab acc name = case mlookup name acc of
  Nothing -> do
    let
      Neat mySigs iMap defs typedList adtTab ffis ffes imps precs = tab ! name
      typed = fromList typedList
      mergedSigs = foldr (slowUnionWith const) Tip $ mySigs : map (typeclasses . (tab !)) imps
      mergedInstances = foldr (slowUnionWith (++)) Tip [fmap (map (im,)) m | (im, m) <- ("", iMap) : map (\im -> (im, instances $ tab ! im)) imps]
      locals = fromList $ map (, ()) $ (fst <$> typedList) ++ (fst <$> defs)
      tycl classId = maybe [] id $ mlookup classId mergedInstances
      dcs = adtTab : map (dataCons . (tab !)) imps
      typeOfMethod s = maybe undefined id $ foldr (<|>) (fst <$> mlookup s typed) [fmap fst $ lookup s $ typedAsts $ tab ! im | im <- imps]
    acc' <- foldM (inferModule tab) acc imps
    let linker = astLink typed locals imps acc'
    depdefs <- mapM (\(s, t) -> (s,) <$> linker (patternCompile dcs $ fixFixity precs t)) defs
    typed <- inferDefs tycl depdefs typed
    typed <- inferTypeclasses tycl typeOfMethod typed dcs precs linker iMap mergedSigs
    Right $ insert name (typed, (ffis, ffes)) acc'
  Just _ -> Right acc

untangle s = do
  tab <- insert "#" neatPrim <$> (parseProgram s >>= tabulateModules)
  foldM (inferModule tab) Tip $ keys tab

neatPrim = foldr (\(a, b) -> addAdt a b []) (Neat Tip Tip [] prims Tip Tip Tip [] Tip) primAdts
-- FFI across multiple modules.
-- Change `div` and `mod` to round down instead towards zero for `Int`.
module RTS where

import Base
import Ast
import Kiselyov
import Map
import Parser

import_qq_here = import_qq_here

libc = [r|#include<stdio.h>
static int env_argc;
int getargcount() { return env_argc; }
static char **env_argv;
int getargchar(int n, int k) { return env_argv[n][k]; }
static int nextCh, isAhead;
int eof_shim() {
  if (!isAhead) {
    isAhead = 1;
    nextCh = getchar();
  }
  return nextCh == -1;
}
void exit(int);
void putchar_shim(int c) { putchar(c); }
int getchar_shim() {
  if (!isAhead) nextCh = getchar();
  if (nextCh == -1) exit(1);
  isAhead = 0;
  return nextCh;
}
void errchar(int c) { fputc(c, stderr); }
void errexit() { fputc('\n', stderr); }
|]

preamble = [r|#define EXPORT(f, sym) void f() asm(sym) __attribute__((export_name(sym)));
void *malloc(unsigned long);
enum { FORWARD = 127, REDUCING = 126 };
enum { TOP = 1<<24 };
static u *mem, *altmem, *sp, *spTop, hp;
static inline u isAddr(u n) { return n>=128; }
static u evac(u n) {
  if (!isAddr(n)) return n;
  u x = mem[n];
  while (isAddr(x) && mem[x] == _T) {
    mem[n] = mem[n + 1];
    mem[n + 1] = mem[x + 1];
    x = mem[n];
  }
  if (isAddr(x) && mem[x] == _K) {
    mem[n + 1] = mem[x + 1];
    x = mem[n] = _I;
  }
  u y = mem[n + 1];
  switch(x) {
    case FORWARD: return y;
    case REDUCING:
      mem[n] = FORWARD;
      mem[n + 1] = hp;
      hp += 2;
      return mem[n + 1];
    case _I:
      mem[n] = REDUCING;
      y = evac(y);
      if (mem[n] == FORWARD) {
        altmem[mem[n + 1]] = _I;
        altmem[mem[n + 1] + 1] = y;
      } else {
        mem[n] = FORWARD;
        mem[n + 1] = y;
      }
      return mem[n + 1];
    default: break;
  }
  u z = hp;
  hp += 2;
  mem[n] = FORWARD;
  mem[n + 1] = z;
  altmem[z] = x;
  altmem[z + 1] = y;
  return z;
}

static void gc() {
  hp = 128;
  u di = hp;
  sp = altmem + TOP - 1;
  for(u *r = root; *r; r++) *r = evac(*r);
  *sp = evac(*spTop);
  while (di < hp) {
    u x = altmem[di] = evac(altmem[di]);
    di++;
    if (x != _NUM) altmem[di] = evac(altmem[di]);
    di++;
  }
  spTop = sp;
  u *tmp = mem;
  mem = altmem;
  altmem = tmp;
}

static inline u app(u f, u x) { mem[hp] = f; mem[hp + 1] = x; return (hp += 2) - 2; }
static inline u arg(u n) { return mem[sp [n] + 1]; }
static inline int num(u n) { return mem[arg(n) + 1]; }
static inline void lazy2(u height, u f, u x) {
  u *p = mem + sp[height];
  *p = f;
  *++p = x;
  sp += height - 1;
  *sp = f;
}
static void lazy3(u height,u x1,u x2,u x3){u*p=mem+sp[height];sp[height-1]=*p=app(x1,x2);*++p=x3;*(sp+=height-2)=x1;}
|]

-- Main VM loop.
comdefsrc = [r|
F x = "foreign(num(1));"
Y x = x "sp[1]"
Q x y z = z(y x)
S x y z = x z(y z)
B x y z = x (y z)
BK x y z = x y
C x y z = x z y
R x y z = y z x
V x y z = z x y
T x y = y x
K x y = "_I" x
KI x y = "_I" y
I x = "sp[1] = arg(1); sp++;"
LEFT x y z = y x
CONS x y z w = w x y
NUM x y = y "sp[1]"
ADD x y = "_NUM" "num(1) + num(2)"
SUB x y = "_NUM" "num(1) - num(2)"
MUL x y = "_NUM" "num(1) * num(2)"
QUOT x y = "_NUM" "num(1) / num(2)"
REM x y = "_NUM" "num(1) % num(2)"
DIV x y = "_NUM" "div(num(1), num(2))"
MOD x y = "_NUM" "mod(num(1), num(2))"
XOR x y = "_NUM" "num(1) ^ num(2)"
AND x y = "_NUM" "num(1) & num(2)"
OR x y = "_NUM" "num(1) | num(2)"
EQ x y = "num(1) == num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
LE x y = "num(1) <= num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
REF x y = y "sp[1]"
NEWREF x y z = z ("_REF" x) y
READREF x y z = z "num(1)" y
WRITEREF x y z w = w "((mem[arg(2) + 1] = arg(1)), _K)" z
END = "return;"
ERR = "sp[1]=app(app(arg(1),_ERREND),_ERR2);sp++;"
ERR2 = "lazy3(2, arg(1), _ERROUT, arg(2));"
ERROUT = "errchar(num(1)); lazy2(2, _ERR, arg(2));"
ERREND = "errexit(); return;"
|]

argList t = case t of
  TC s -> [TC s]
  TV s -> [TV s]
  TAp (TC "IO") (TC u) -> [TC u]
  TAp (TAp (TC "->") x) y -> x : argList y
  _ -> [t]

cTypeName (TC "()") = "void"
cTypeName (TC "Int") = "int"
cTypeName (TC "Char") = "int"
cTypeName _ = "int"

ffiDeclare (name, t) = let tys = argList t in (concat
  [cTypeName $ last tys, " ", name, "(", intercalate "," $ cTypeName <$> init tys, ");\n"]++)

ffiArgs n t = case t of
  TAp (TC "IO") u -> ("", ((False, u), n))
  TAp (TAp (TC "->") _) y -> first (((if 3 <= n then ", " else "") ++ "num(" ++ shows n ")") ++) $ ffiArgs (n + 1) y
  _ -> ("", ((True, t), n))

needsNum t = case t of
  TC "Int" -> True
  TC "Char" -> True
  _ -> False

ffiDefine n (name, t) = ("case " ++) . shows n . (": " ++) . if ret == TC "()"
  then longDistanceCall . cont ("_K"++) . ("); break;"++)
  else ("{u r = "++) . longDistanceCall . cont ((if needsNum ret then "app(_NUM, r)" else "r") ++) . ("); break;}\n"++)
  where
  (args, ((isPure, ret), count)) = ffiArgs 2 t
  lazyn = ("lazy2(" ++) . shows (if isPure then count - 1 else count + 1) . (", " ++)
  cont tgt = if isPure then ("_I, "++) . tgt else ("app(arg("++) . shows (count + 1) . ("), "++) . tgt . ("), arg("++) . shows count . (")"++)
  longDistanceCall = (name++) . ("("++) . (args++) . ("); "++) . lazyn

genMain n = "int main(int argc,char**argv){env_argc=argc;env_argv=argv;rts_reduce(" ++ shows n ");return 0;}\n"

arrCount = \case
  TAp (TAp (TC "->") _) y -> 1 + arrCount y
  _ -> 0

genExport m n = ("void f"++) . shows n . ("("++)
  . foldr (.) id (intersperse (',':) $ map (("u "++) .) xs)
  . ("){rts_reduce("++)
  . foldl (\s x -> ("app("++) . s . (",app(_NUM,"++) . x . ("))"++)) rt xs
  . (");}\n"++)
  where
  xs = map ((('x':) .) . shows) [0..m - 1]
  rt = ("root["++) . shows n . ("]"++)

genArg m a = case a of
  V s -> ("arg("++) . (maybe undefined shows $ lookup s m) . (')':)
  E (StrCon s) -> (s++)
  A x y -> ("app("++) . genArg m x . (',':) . genArg m y . (')':)
genArgs m as = foldl1 (.) $ map (\a -> (","++) . genArg m a) as
genComb (s, (args, body)) = let
  argc = ('(':) . shows (length args)
  m = zip args [1..]
  in ("case _"++) . (s++) . (':':) . (case body of
    A (A x y) z -> ("lazy3"++) . argc . genArgs m [x, y, z] . (");"++)
    A x y -> ("lazy2"++) . argc . genArgs m [x, y] . (");"++)
    E (StrCon s) -> (s++)
  ) . ("break;\n"++)

comb = (,) <$> conId <*> ((,) <$> many varId <*> (res "=" *> combExpr))
combExpr = foldl1 A <$> some
  (V <$> varId <|> E . StrCon <$> lexeme tokStr <|> paren combExpr)
comdefs = case parse (lexemePrelude *> braceSep comb <* eof) comdefsrc of
  Left e -> error e
  Right (cs, _) -> cs
comEnum s = maybe (error s) id $ lookup s $ zip (fst <$> comdefs) [1..]
comName i = maybe undefined id $ lookup i $ zip [1..] (fst <$> comdefs)

runFun = ([r|
static int div(int a, int b) { int q = a/b; return q - (((u)(a^b)) >> 31)*(q*b!=a); }
static int mod(int a, int b) { int r = a%b; return r + (((u)(a^b)) >> 31)*(!!r)*b; }

static void run() {
  for(;;) {
    if (mem + hp > sp - 8) gc();
    u x = *sp;
    if (isAddr(x)) *--sp = mem[x]; else switch(x) {
|]++)
  . foldr (.) id (genComb <$> comdefs)
  . ([r|
    }
  }
}

void rts_init() {
  mem = malloc(TOP * sizeof(u)); altmem = malloc(TOP * sizeof(u));
  hp = 128;
  for (u i = 0; i < sizeof(prog)/sizeof(*prog); i++) mem[hp++] = prog[i];
  spTop = mem + TOP - 1;
}

void rts_reduce(u n) {
  static u ready;if (!ready){ready=1;rts_init();}
  *(sp = spTop) = app(app(n, _UNDEFINED), _END);
  run();
}
|]++)

resolve bigmap (m, s) = either (resolve bigmap) id $ (bigmap ! m) ! s

mayResolve bigmap (m, s) = mlookup m bigmap
  >>= fmap (either (resolve bigmap) id) . mlookup s

appCell (hp, bs) x y = (Right hp, (hp + 2, bs . (x:) . (y:)))

enc tab mem = \case
  Lf n -> case n of
    Basic c -> (Right $ comEnum c, mem)
    Const c -> appCell mem (Right $ comEnum "NUM") $ Right c
    ChrCon c -> appCell mem (Right $ comEnum "NUM") $ Right $ ord c
    StrCon s -> enc tab mem $ foldr (\h t -> Nd (Nd (lf "CONS") (Lf $ ChrCon h)) t) (lf "K") s
    Link m s _ -> (Left (m, s), mem)
  LfVar s -> maybe (error $ "resolve " ++ s) (, mem) $ mlookup s tab
  Nd x y -> let
    (xAddr, mem') = enc tab mem x
    (yAddr, mem'') = enc tab mem' y
    in appCell mem'' xAddr yAddr

asm hp0 combs = tabmem where
  tabmem = foldl (\(as, m) (s, t) -> let (p, m') = enc (fst tabmem) m t
    in (insert s p as, m')) (Tip, (hp0, id)) combs

rewriteCombs tab = optim . go where
  go = \case
    LfVar v -> let t = follow [v] v in case t of
      Lf (Basic _) -> t
      LfVar w -> if v == w then Nd (lf "Y") (lf "I") else t
      _ -> LfVar v
    Nd a b -> Nd (go a) (go b)
    t -> t
  follow seen v = case tab ! v of
    LfVar w | w `elem` seen -> LfVar $ last seen
            | True -> follow (w:seen) w
    t -> t

codegenLocal (name, (typed, _)) (bigmap, (hp, f)) =
  (insert name localmap bigmap, (hp', f . memF))
  where
  rawCombs = optim . nolam . snd <$> typed
  combs = toAscList $ rewriteCombs rawCombs <$> rawCombs
  (localmap, (hp', memF)) = asm hp combs

codegen ffis mods = (bigmap', mem) where
  (bigmap, (_, memF)) = foldr codegenLocal (Tip, (128, id)) $ toAscList mods
  bigmap' = (resolveGlobal <$>) <$> bigmap
  mem = resolveGlobal <$> memF []
  ffiIndex = fromList $ zip (keys ffis) [0..]
  resolveGlobal = \case
    Left (m, s) -> if m == "{foreign}"
      then ffiIndex ! s
      else resolveGlobal $ (bigmap ! m) ! s
    Right n -> n

getIOType (Qual [] (TAp (TC "IO") t)) = Right t
getIOType q = Left $ "main : " ++ show q

compile mods = do
  let
    ffis = foldr (\(k, v) m -> insertWith (error $ "duplicate import: " ++ k) k v m) Tip $ concatMap (toAscList . fst . snd) $ elems mods
    (bigmap, mem) = codegen ffis mods
    ffes = foldr (\(expName, v) m -> insertWith (error $ "duplicate export: " ++ expName) expName v m) Tip
      [ (expName, (addr, argcount))
      | (modName, (_, (_, ffes))) <- toAscList mods
      , (expName, ourName) <- toAscList ffes
      , let addr = maybe (error $ "missing: " ++ ourName) id $ mlookup ourName $ bigmap ! modName
      , let argcount = arrCount $ mustType modName ourName
      ]
    mustType modName s = case mlookup s $ fst $ mods ! modName of
      Just (Qual [] t, _) -> t
      _ -> error "TODO: report bad exports"
    mayMain = do
      mainAddr <- mlookup "main" =<< mlookup "Main" bigmap
      (mainType, _) <- mlookup "main" $ fst $ mods ! "Main"
      pure (mainAddr, mainType)
  mainStr <- case mayMain of
    Nothing -> pure ""
    Just (a, q) -> do
      getIOType q
      pure $ genMain a

  pure
    $ ("typedef unsigned u;\n"++)
    . ("enum{_UNDEFINED=0,"++)
    . foldr (.) id (map (\(s, _) -> ('_':) . (s++) . (',':)) comdefs)
    . ("};\n"++)
    . ("static const u prog[]={" ++)
    . foldr (.) id (map (\n -> shows n . (',':)) mem)
    . ("};\nstatic u root[]={" ++)
    . foldr (.) id (map (\(addr, _) -> shows addr . (',':)) $ elems ffes)
    . ("0};\n" ++)
    . (preamble++)
    . (libc++)
    . foldr (.) id (ffiDeclare <$> toAscList ffis)
    . ("static void foreign(u n) {\n  switch(n) {\n" ++)
    . foldr (.) id (zipWith ffiDefine [0..] $ toAscList ffis)
    . ("\n  }\n}\n" ++)
    . runFun
    . foldr (.) id (zipWith (\(expName, (_, argcount)) n -> ("EXPORT(f"++) . shows n . (", \""++) . (expName++) . ("\")\n"++) . genExport argcount n) (toAscList ffes) [0..])
    $ mainStr
-- FFI across multiple modules.
module Main where
import Base
import Map
import Ast
import RTS
import Typer
import Kiselyov
import System

hide_prelude_here' = hide_prelude_here'

dumpWith dumper s = case untangle s of
  Left err -> err
  Right tab -> foldr ($) [] $ map (\(name, mod) -> ("module "++) . (name++) . ('\n':) . (foldr (.) id $ dumper mod)) $ toAscList tab

dumpLambs (typed, _) = map (\(s, (_, t)) -> (s++) . (" = "++) . shows t . ('\n':)) $ toAscList typed

dumpTypes (typed, _) = map (\(s, (q, _)) -> (s++) . (" :: "++) . shows q . ('\n':)) $ toAscList typed

dumpCombs (typed, _) = map go combs where
  rawCombs = optim . nolam . snd <$> typed
  combs = toAscList $ rewriteCombs rawCombs <$> rawCombs
  go (s, t) = (s++) . (" = "++) . shows t . (";\n"++)

main = getArgs >>= \case
  "comb":_ -> interact $ dumpWith dumpCombs
  "lamb":_ -> interact $ dumpWith dumpLambs
  "type":_ -> interact $ dumpWith dumpTypes
  _ -> interact \s -> either id id $ untangle s >>= compile

Ben Lynn blynn@cs.stanford.edu 💡